K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

AH
Akai Haruma
Giáo viên
7 tháng 12 2023

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$

AH
Akai Haruma
Giáo viên
10 tháng 1 2022

Lời giải:

$B=\frac{10^{11}+10}{10^{12}+10}$

Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:

$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$

$\Rightarrow A< B$

 

10 tháng 1 2022

cảm ơn cô giáo

5 tháng 3 2017

choáng

10 tháng 9 2017

dài quá mik ko làm âu

11 tháng 7 2017

Ta có :\(a=\dfrac{10^{11}-1}{10^{12}-1}\Rightarrow10a=\dfrac{10^{12}-10}{10^{12}-1}=\dfrac{10^{12}-1-9}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)

\(b=\dfrac{10^{10}+1}{10^{11}+1}\Rightarrow10b=\dfrac{10^{11}+10}{10^{11}+1}=\dfrac{10^{11}+1+9}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

Ta có : \(1-\dfrac{9}{10^{12}-1}\le1+\dfrac{9}{10^{11}+1}\) hay \(10a< 10b\Rightarrow a< b\)

11 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)

\(A< \dfrac{10^{11}-1+11}{10^{12}-1+11}\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

19 tháng 2 2023

a. 19/10 > 10/11

b. 11/10 = 12/11

c. 9/10 = 10/11

19 tháng 2 2023

a)\(\dfrac{19}{10}>\dfrac{10}{11}\)

b)\(\dfrac{11}{10}=\dfrac{12}{11}\)

c)\(\dfrac{9}{10}< \dfrac{10}{11}\)

Giải:

a)Ta có:

C=1957/2007=1957+50-50/2007

                      =2007-50/2007

                      =2007/2007-50/2007

                      =1-50/2007

D=1935/1985=1935+50-50/1985

                      =1985-50/1985

                      =1985/1985-50/1985

                      =1-50/1985

Vì 50/2007<50/1985 nên -50/2007>-50/1985

⇒C>D

b)Ta có:

A=20162016+2/20162016-1

A=20162016-1+3/20162016-1

A=20162016-1/20162016-1+3/20162016-1

A=1+3/20162016-1

Tương tự: B=20162016/20162016-3

                 B=1+3/20162016-3

Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3

⇒A<B

Chúc bạn học tốt!

 

 

Làm tiếp:

c)Ta có:

M=102018+1/102019+1

10M=10.(102018+1)/202019+1

10M=102019+10/102019+1

10M=102019+1+9/102019+1

10M=102019+1/102019+1 + 9/102019+1

10M=1+9/102019+1

Tương tự:

N=102019+1/102020+1

10N=1+9/102020+1

Vì 9/102019+1>9/102020+1 nên 10M>10N

⇒M>N

Chúc bạn học tốt!

12 tháng 5 2018

ta có :

\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)

=> 10A<10B =>A<B

vậy A bé hơn B

12 tháng 5 2018

Bạn ơi !

Hàng thứ 2 dưới lên phải viết là : Ta có : 10A < 10B => A < B

1 tháng 4 2018

\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}\)

\(=\dfrac{10a^n+9a^m+a^m}{a^ma^n}\)

\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}\)

\(=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\)

+ Nếu m > n thì am > an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}>\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A > B

+ Nếu m < n thì am < an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}< \dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A < B

+ Nếu m = n thì am = an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A = B