K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Ta có :\(a=\dfrac{10^{11}-1}{10^{12}-1}\Rightarrow10a=\dfrac{10^{12}-10}{10^{12}-1}=\dfrac{10^{12}-1-9}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)

\(b=\dfrac{10^{10}+1}{10^{11}+1}\Rightarrow10b=\dfrac{10^{11}+10}{10^{11}+1}=\dfrac{10^{11}+1+9}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

Ta có : \(1-\dfrac{9}{10^{12}-1}\le1+\dfrac{9}{10^{11}+1}\) hay \(10a< 10b\Rightarrow a< b\)

11 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)

\(A< \dfrac{10^{11}-1+11}{10^{12}-1+11}\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

AH
Akai Haruma
Giáo viên
10 tháng 1 2022

Lời giải:

$B=\frac{10^{11}+10}{10^{12}+10}$

Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:

$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$

$\Rightarrow A< B$

 

10 tháng 1 2022

cảm ơn cô giáo

AH
Akai Haruma
Giáo viên
7 tháng 12 2023

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$

12 tháng 5 2018

ta có :

\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)

=> 10A<10B =>A<B

vậy A bé hơn B

12 tháng 5 2018

Bạn ơi !

Hàng thứ 2 dưới lên phải viết là : Ta có : 10A < 10B => A < B

6 tháng 5 2021

undefined

24 tháng 5 2017

Ta có: \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}\)

\(\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\)

\(\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\)

\(\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).

24 tháng 5 2017

Cách 2:

Ta có: \(10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)

\(10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

\(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\Rightarrow1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\)

\(\Rightarrow10A< 10B\Rightarrow A< B\)

Vậy A < B

6 tháng 1 2016

 B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

6 tháng 1 2016

 A=10^11-1/10^12-1 < B=10^10+1/10^11=1.

C
5 tháng 3

Hỏi 24.10.0.09.98.98888876676.978687877877.9866533145.6655543227.665433346.7646676:2

C
5 tháng 3

T

28 tháng 6 2015

Nếu có 1  phân số a/b < 1 thì a/b < a+n/b+n.

Tương tự ta có: A < (1011 -1)+11/(1012-1)+10

                        A < 1011+10/1012+10

                        A < 10(1010+1)/10(1011+1)

                        A < 10(1010+1)/10(1011+1)

                        A < 1010+1/1011+1

         Vậy  A < B

28 tháng 6 2015

 B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A