K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Ta có :

\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+......................+\dfrac{1}{n^3}\)

\(2A=\dfrac{2}{2^3}+\dfrac{2}{3^3}+\dfrac{2}{4^3}+.....................+\dfrac{2}{n^3}\)

Vì :

\(\dfrac{2}{2^3}< \dfrac{2}{1.2.3}\)

\(\dfrac{2}{3^3}< \dfrac{1}{2.3.4}\)

.................................

\(\dfrac{2}{n^3}< \dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)

\(\Rightarrow2A< \dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...................+\dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)

\(2A< \dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..............+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)

\(2A< \dfrac{1}{1.2}-\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A< \left(\dfrac{1}{1.2}-\dfrac{1}{n\left(n+1\right)}\right):2\)

\(A< \dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)

\(\Rightarrow A< \dfrac{1}{4}\) \(\rightarrowđpcm\)

~ Chúc bn học tốt ~

7 tháng 10 2021

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

7 tháng 10 2021

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

10 tháng 10 2021

\(1,\)

\(a,\) Sửa: \(A=10^n+72n-1⋮81\)

Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)

Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)

Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)

\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)

Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)

Theo pp quy nạp 

\(\Rightarrow A⋮81\)

\(b,B=2002^n-138n-1⋮207\)

Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)

Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)

Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)

\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)

Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)

Nên theo pp quy nạp \(B⋮207,\forall n\)

10 tháng 10 2021

\(2,\)

\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)

Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)

Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)

Với \(n=k+1\)

Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)

Thật vậy, ta có:

\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)

Theo pp quy nạp ta có đpcm

\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)

Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)

Với \(n=k+1\)

Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Thật vậy, ta có

\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Theo pp quy nạp ta được đpcm

11 tháng 1 2019

bà mới tốt nghiệp trường khoa học viễn tưởng ak,sao tưởng tượng giỏi thếucche

5 tháng 1 2019

A=3^n+3+2^n+3+3^n+1+2^n+2

A=(3^n+3+3^n+1)+(2^n+3+2^n+2)

A=3^n(3^3+3)+2^n(2^3+2^2)

=3^n.30+2^n.12

=6(3^n.5+2^n.2) chia hết cho 6

=>A chia hết cho 6

(Công nhận Nhi giỏi thật mới thi hôm qua mà tối hôm kia đã hỏileuleu)

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{(n-1)n}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{n-(n-1)}{(n-1)n}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}$

$=1-\frac{1}{n}< 1$
Ta có đpcm.