Giải phương trình
a/\(\left|x^2+1\right|=0\)
b/ \(4x^2+17\left(x+1\right)=x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự kl nhaaa
a, \(\left(x-2\right)\left(x+8\right)>x\left(x+2\right)\)
\(\Leftrightarrow x^2+6x-16>x^2+2x\Leftrightarrow4x-16>0\Leftrightarrow-16>-4x\Leftrightarrow x>4\)
b, \(2\left(x-1\right)-12< 0\Leftrightarrow2x-2-12< 0\Leftrightarrow-14< -2x\Leftrightarrow x< 7\)
a: Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=-60\)
hay x=-20
b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
a \(\Leftrightarrow\left\{{}\begin{matrix}6x^2-3xy+x=1-y\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow6x^2-3xy+x-1+y=0\)
\(\Leftrightarrow\left(6x^2+x-1\right)-\left(3xy-y\right)=0\) \(\Leftrightarrow\left(6x^2+3x-2x-1\right)+y\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)+y\left(3x-1\right)=0\) \(\Leftrightarrow\left(3x-1\right)\left(2x+1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x+y=-1\end{matrix}\right.\)
*Nếu 3x-1=0⇔x=\(\dfrac{1}{3}\) Thay vào (2) ta được:
\(\dfrac{1}{9}+y^2=1\Leftrightarrow y^2=\dfrac{8}{9}\Leftrightarrow y=\dfrac{\pm2\sqrt{2}}{3}\)
*Nếu 2x+y=-1\(\Leftrightarrow y=-1-2x\) Thay vào (2) ta được :
\(\Rightarrow x^2+\left(-2x-1\right)^2=1\Leftrightarrow x^2+4x^2+4x+1=1\Leftrightarrow5x^2+4x=0\Leftrightarrow x\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-4}{5}\end{matrix}\right.\)
.Nếu x=0⇒y=0
.Nếu x=\(\dfrac{-4}{5}\) \(\Rightarrow y=-1+\dfrac{4}{5}=-\dfrac{1}{5}\) Vậy...
Câu b)
\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x\left(x-1\right)+y\left(x-1\right)\\x^2-3xy+4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+y\right)=0\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)
Để (x-1)(2x+y) = 0 thì: \(\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=1\\2x+y=0\end{matrix}\right.\)
Thay x=1 vào PT (2) ta có:
(2) ⇔12-3.1.y+4=0
⇔1-3y +4=0
⇔-3y+5=0
⇔y=\(\dfrac{5}{3}\)
Vậy HPT có nghiệm (x:y) = (1;\(\dfrac{5}{3}\))
a)Pt \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\dfrac{1}{3}+\dfrac{1}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{5}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{5}{6}\\2x-1=-\dfrac{5}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{1}{12}\end{matrix}\right.\)
Vậy...
b)Đk:\(x\ge3\)
Pt \(\Leftrightarrow\sqrt{x-3}\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-4=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=4\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
Vậy...
c)Đk:\(x\ge1\)
\(x+\sqrt{x-1}=13\)
\(\Leftrightarrow\sqrt{x-1}=13-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}13-x\ge0\\x-1=x^2-26x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-27x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-17x-10x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left(x-17\right)\left(x-10\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left[{}\begin{matrix}x=17\\x=10\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=10\) (tm)
Vậy...
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)
a) Ta có: \(\sqrt{\left(x+1\right)^2}=3\)
\(\Leftrightarrow\left|x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b) Ta có: \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)
\(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x-3}-2\sqrt{x+1}=5\)
\(\Leftrightarrow4\sqrt{x+1}=5+3\sqrt{x-3}\)
\(\Leftrightarrow16\left(x+1\right)=25+30\sqrt{x-3}+9\left(x-3\right)\)
\(\Leftrightarrow16x+16=25+9x-27+30\sqrt{x-3}\)
\(\Leftrightarrow30\sqrt{x-3}=16x+16+2-9x\)
\(\Leftrightarrow30\sqrt{x-3}=7x+18\)
\(\Leftrightarrow x-3=\left(\dfrac{7x+18}{30}\right)^2\)
\(\Leftrightarrow x-3=\dfrac{49x^2}{900}+\dfrac{7}{25}x+\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{49}{900}x^2-\dfrac{18}{25}x+\dfrac{84}{25}=0\)
\(\Delta=\left(-\dfrac{18}{25}\right)^2-4\cdot\dfrac{49}{900}\cdot\dfrac{84}{25}=-\dfrac{16}{75}< 0\)
Vậy: Phương trình vô nghiệm
a)Pt\(\Leftrightarrow\left|x+1\right|=3\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b)Đk:\(x\ge-1\)
Sửa đề: \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Pt \(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=5\)
\(\Leftrightarrow x=24\left(tm\right)\)
a, <=> (x-1)^3 + x^2(x-1)=0
<=> (x-1)(x^2-2x+1+x^2)=0
<=> (x-1)(2x^2-2x+1)=0
=> x=1
2x^2-2x+1=0 (*)
giải (*):
2x^2-2x+1=0
<=> (x-1)^2 + x^2 > 0
=> * vô nghiệm
=> Pt có nghiệm là 1.
b, x^2+x-12=0
<=> (x-3)(x+4)=0
=> x=3 hoặc x = -4
vậy....
c, 6x^2-11x-10=0
<=> (x-5/2)(6x+4)=0
=> x=5/2 hoặc x= -2/3.
vậy...
a. | x2 + 1 | = 0
\(\Rightarrow\)x2 + 1 = 0
\(\Rightarrow\)x2 = 0 - 1
\(\Rightarrow\)x2 = - 1
\(\Rightarrow\)x \(\in\varnothing\)
\(\left|x^2+1\right|=0\)
\(x^2+1=0\)
\(x^2=-1\)
\(\orbr{\begin{cases}x=i\left(TM\right)\\x=-i\left(TM\right)\end{cases}}\)
\(b,4x^2+17\left(x+1\right)=x+1\)
\(4x^2+17x+17-x-1=0\)
\(4x^2+16x+16=0\)
\(4x^2+8x+8x+16=0\)
\(4x\left(x+2\right)+8\left(x+2\right)=0\)
\(\left(4x+8\right)\left(x+2\right)=0\)
\(4\left(x+2\right)\left(x+2\right)=0\)
\(\left(x+2\right)^2=0\)
\(x=-2\left(TM\right)\)