K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0 
=> y^3 > x^3 (1) 
mặt khác: 
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0 
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2) 
(1) và (2) => y^3 = (x + 1)^3 => y = x +1 
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3 
<=> 2x^2 + 2x =0 
<=> 2x(x+1)=0 
=> x = 0 và y=1 
hoặc x = -1 và y = 0

30 tháng 4

Dùng định lý kẹp nhé

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

có x2 >= 0

<=> x+ 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)

Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x+ 3x2 + 3x + 1

<=> x = 0

Thay vào biểu thức được y = -3

Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)

30 tháng 4

Cái phần "

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

" bị sai

đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3

thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x =  -1 => y = -1

Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

2 tháng 2 2018

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: x,y∈Z+x,y∈Z+

PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y

Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.

Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)

Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0

⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)

TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.

Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3

Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1

TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)

PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3

⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3

Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)

PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)

Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)

2 tháng 2 2018

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: x,yZ+x,y∈Z+

PT tương đương: (xy)(4xy2)=(xy)310xy(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y

Nếu x=yx=y thì hiển nhiên có xy=1x=y=1xy=1⇒x=y=1.

Xét x>yx>y có 4xy(xy)2(xy)+1=(xy)3xy2(xy)1xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)

Vì 2(xy)102(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(xy)1xy(y2)(x+2)5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0

y2<0y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)

TH2: x,yx,y đều âm. Ta thay x=a,y=bx=−a,y=−b với a,ba,b nguyên dương.

Phương trình trở thành 2a(2b2+1)2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3

Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=1x=y=−1

TH3: x>0,y<0x>0,y<0. Đặt x=a,y=bx=a,y=−b (a,ba,b nguyên dương)

PT tương đương: 2b(2a2+1)+2a(2b2+1)1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3

2(a+b)1ab⇒2(a+b)−1⋮ab. Vì 2(a+b)102(a+b)−1≠0 nên 2(a+b)1ab(a2)(b2)32(a+b)−1≥ab⇒(a−2)(b−2)≤3

Với a,b1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: x<0,y>0x<0,y>0. Đặt x=a,y=bx=−a,y=b (a,ba,b nguyên dương)

PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)

Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(1;1)

\(PT\Leftrightarrow x^3+2x^2+3x+2=y^3\)

Với  x thuộc đoạn {-1,1} ta có

\(x^3< x^3+2x^2+3x+2< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(vô lí)

\(\Rightarrow x\in[-1;1]\)

\(\Rightarrow x\in\left\{-1,0,1\right\}\)

Với x=-1=> y=0(tm)

Với x=0=>\(y=\sqrt[3]{2}\left(ktm\right)\)

Với x=1=>y=2(tm)

Vậy...........