Tìm n sao cho 2.22 + 3.23 + ............+ n.2n = 2n+11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2(x+1)=26
=>x+1=13
=>x=12
b: =>(6x)^3=125
=>6x=5
=>x=5/6(loại)
c: =>\(7\cdot3^x\cdot\dfrac{1}{3}+11\cdot3^x\cdot3=318\)
=>3^x=9
=>x=2
d: -2x+13 chia hết cho x+1
=>-2x-2+15 chia hết cho x+1
=>15 chia hết cho x+1
=>x+1 thuộc {1;3;5;15}
=>x thuộc {0;2;4;14}
e: 4x+11 chia hết cho 3x+2
=>12x+33 chia hết cho 3x+2
=>12x+8+25 chia hết cho 3x+2
=>25 chia hết cho 3x+2
=>3x+2 thuộc {1;-1;5;-5;25;-25}
mà x là số tự nhiên
nên x=1
1:
a: Đặt A=2^2024-2^2023-...-2^2-2-1
Đặt B=2^2023+2^2022+...+2^2+2+1
=>2B=2^2024+2^2023+...+2^3+2^2+2
=>B=2^2024-1
=>A=2^2024-2^2024+1=1
c: \(=\dfrac{3^{12}\cdot2^{11}+2^{10}\cdot3^{12}\cdot5}{2^2\cdot3\cdot3^{11}\cdot2^{11}}=\dfrac{2^{10}\cdot3^{12}\left(2+5\right)}{2^{13}\cdot3^{12}}\)
\(=\dfrac{7}{2^3}=\dfrac{7}{8}\)
\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)
\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)
\(2S-S=S=\text{}\text{}\text{}\text{}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)
\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)
\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)
\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)
\(2A=2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)
\(A=2^{2017}-2\)
Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)
\(S=2^{2017}.2015+2\)
Ta có \(S+2013=2^{2017}.2015+2+2013\)
\(S+2013=2^{2017}.2015+2015\)
\(S+2013=2015\left(2^{2017}+1\right)\)
Suy ra \(S+2013⋮2^{2017}+1\)
Vậy \(S+2013⋮2^{2017}+1\) (đpcm)
Cái chỗ n + 2 = 1
=> n = 1 - 2 = -1
Lớp 6 HKI chưa học số âm nên mình nới vô lí nhé !
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(\Rightarrow2A=2\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(\Rightarrow A=n.2^{n+1}-2^3-\) \(\left(2^3+2^4+...+2^{n-1}+2^n\right)\)
Đặt \(B=2^3+2^4+2^5+...+2^{n-1}+2^n\)
Ta tính được \(B=2B-B=2^{n-1}-2^3\)
\(\Rightarrow A=n.2^{n+1}-2^3-2^{n-1}+2^3\) \(=\left(n-1\right).2^{n+1}\)
Mà \(A=2^{n+11}\) \(\Rightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Rightarrow n-1=2^{10}\Rightarrow n=2^{10}+1=1025\)
Vậy \(n=1025\)