Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=2.2^2+3.2^3+...+n.2^n=2^{n+11}
S=2S-S=(2.2^3+3.2^4+4.2^5+...+n.2^{n+1})-(2.2^2+3.2^3+4.2^4+...+n.2^n)
S=n.2^{n+1}-2^3-(2^3+2^4+...+2^{n-1}+2^n)
Dat T=2^3+2^4+...+2^{n-1}+2^n
Ta tinh dc: T=2T-T=2^{n-1}-2^3
S=n.2^{n+1}-2^3-2^{n-1}+2^3=(n-1).2^{n+1}
=> (n-1).2^{n+1}=n^{n+11}
=> n-1=2^{10}
=> n=2^{10}+1
=> n=1024+1
=> n = 1025
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(\Leftrightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Leftrightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-\left(2.2^2+3.2^3+4.2^4+...+n.2^n\right)\)
\(\Leftrightarrow A=-2.2^2-2^3-2^4-....-2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n+1}\)
mà \(A=2^{n+11}\) \(\Leftrightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Leftrightarrow\left(n-1\right).2^n.2=2^n.2^{11}\)
\(\Leftrightarrow\left(n-1\right)=2^{10}\)
\(\Leftrightarrow n=2^{10}+1\)
Giải:
Đặt \(S=2.2^2+3.2^3+...+n.2^n=2^{n+11}\)
\(S=2S-S=\left(2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+4.2^4+...+n.2^n\right)\)
\(S=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^{n-1}+2^n\right)\)
Đặt \(T=2^3+2^4+...+2^{n-1}+2^n\)
Ta tính được: \(T=2T-T=2^{n-1}-2^3\)
\(\Rightarrow S=n.2^{n+1}-2^3-2^{n-1}+2^3=\left(n-1\right).2^{n+1}\)
\(\Rightarrow\left(n-1\right).2^{n+1}=n^{n+11}\)
\(\Rightarrow n-1=2^{10}\)
\(\Rightarrow n=2^{10}+1\)
\(n=1024+1\)
\(\Rightarrow n=1025\)
Đặt A = 2.22 + 3.23 + 4.24 + ... + n.2n
2A = 2.23 + 3.24 + 4.25 + ... + n.2n+1
2A - A = (2.23 - 3.23) + (3.24 - 4.24) + ... + [(n-1).2n - n.2n] + n.2n+1
A = -23 - 24 - ... - 2n + n.2n+1 - 2.22
A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23
Đặt B = 23 + 24 + ... + 2n
2B = 24 + 25 + ... + 2n+1
2B - B = 24 + 25 + ... + 2n+1 - 23 - 24 - 2n
B = 2n+1 - 23
Mà A = n.2n+1 - (23 + 24 + 25 + ... + 2n) - 23
=> A = n.2n+1 - B - 23
=> A = n.2n+1 - (2n+1 - 23) - 23
A = n.2n+1 - 2n+1 + 23 - 23
A = (n-1).2n+1
Mà 2.22+ 3.23 + 4.24 + 5.25 + · · · + n.2n = 2n+10
=> A = 2n+10
=> (n-1).2n+1 = 2n+10
(n-1) = 2n+10 : 2n+1
n-1 = 29
n = 512 + 1
n = 513
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
=>\(2.A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
=>\(A-2A=2.2^2+3.2^3+4.2^4+...+n.2^n-2.2^3-3.2^4-4.2^5-...-n.2^{n+1}\)
=>\(-A=2.2^2+\left(3.2^3-2.2^3\right)+\left(4.2^4-3.2^4\right)+...+\left(n.2^n-\left(n-1\right).2^n\right)-n.2^{n+1}\)
=>\(-A=2^3+2^3+2^4+...+2^n-n.2^{n+1}\)
=>\(-A=2^3+\left(2^3+2^4+...+2^n\right)-n.2^{n+1}\)
=>\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)
Đặt \(B=2^3+2^4+...+2^n\)
=>\(2.B=2^4+2^5+...+2^{n+1}\)
=>\(2.B-B=2^4+2^5+...+2^{n+1}-2^3-2^4-...-2^n\)
=>\(B=2^{n+1}-2^3\)
Lại có:\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)
=>\(A=n.2^{n+1}-2^3-B\)
=>\(A=n.2^{n+1}-2^3-\left(2^{n+1}-2^3\right)\)
=>\(A=n.2^{n+1}-2^3-2^{n+1}+2^3\)
=>\(A=n.2^{n+1}-2^{n+1}\)
=>\(A=\left(n-1\right).2^{n+1}\)
Mà \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)
=>\(\left(n-1\right).2^{n+1}=2^{n+10}\)
=>\(n-1=2^{n+10}:2^{n+1}\)
=>\(n-1=2^{n+10-n-1}\)
=>\(n-1=2^9\)
=>\(n-1=512\)
=>\(n=513\)
Vậy n=513
dài thế hình như cô giáo lớp mình giải còn ngắn hơn thế này
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(\Rightarrow2A=2\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(\Rightarrow A=n.2^{n+1}-2^3-\) \(\left(2^3+2^4+...+2^{n-1}+2^n\right)\)
Đặt \(B=2^3+2^4+2^5+...+2^{n-1}+2^n\)
Ta tính được \(B=2B-B=2^{n-1}-2^3\)
\(\Rightarrow A=n.2^{n+1}-2^3-2^{n-1}+2^3\) \(=\left(n-1\right).2^{n+1}\)
Mà \(A=2^{n+11}\) \(\Rightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Rightarrow n-1=2^{10}\Rightarrow n=2^{10}+1=1025\)
Vậy \(n=1025\)