cho đa thức:\(P\left(x\right)=|2x-6|+|2x-2|\)
a/Tìm x để P(x) = 6
b/Tìm giá trị nhỏ nhất của P(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bài này cần bảng xét dấu nhé bạn. Câu a bạn tìm được x = 0,5 và x = 3,5
b) Mình không hiểu bạn cần tìm P(x) nhỏ nhất hay x nhỏ nhất.
Với x nhỏ nhất, x có thể là bao nhiêu cũng được.
Với P(x) nhỏ nhất, bạn sẽ đổi dấu giá trị tuyệt đối mà bình thường khi không có dấu giá trị tuyệt đối thì nó sẽ luôn luôn bé hơn.
Theo bài trên, có: 2x - 6 < 2x - 2
=> P(x) = | 2x - 6 | + | 2x - 2 |
Ta có một công thức như sau: |a| + |b| >= |a + b|
Dấu bằng xảy ra khi a . b dương.
Ta có: P(x) = | 2x - 6 | +| 2x - 2 | = | 6 - 2x | + | 2x - 2 | \(\ge\) | 6 - 2x + 2x - 2 | = 4
=> P(x) \(\ge\) 4
Vì P(x) min => P(x) = 4
Vậy Min P(x) = 4
a)
TH1 : x<1
\(\Rightarrow\left|2x-6\right|+\left|2x-2\right|=6\\ \Leftrightarrow-2x+6-2x+2=6\\ \Leftrightarrow-4x=-2\\ \Leftrightarrow x=\dfrac{1}{2}\)
TT : Xét TH 2 ; 1<=x<3
TH 3 : x>=3
b)
Áp dụng BĐT : \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|2x-6\right|+\left|2x-2\right|=\left|6-2x\right|+\left|2x-2\right|\\ \ge\left|6-2x+2x-2\right|\\ =4\)
Min A = 4 khi \(1\le x\le3\)
Bài 1:
$2^{x+1}.3^y=12^x=(2^2.3)^x=2^{2x}.3^x$
$\Rightarrow x+1=2x$ và $y=x$
$\Rightarrow x=1$ và $y=x$
$\Rightarrow x=y=1$
Bài 2:
a. $P(x)=|2x-6|+|2x-2|=6$
$\Rightarrow 2|x-3|+2|x-1|=6$
$\Rightarrow |x-3|+|x-1|=3(*)$
Nếu $x\geq 3$ thì $(*)$ trở thành:
$x-3+x-1=3$
$\Rightarrow 2x-4=3\Rightarrow x=\frac{7}{2}$ (tm)
Nếu $3> x\geq 1$ thì $(*)$ trở thành:
$3-x+x-1=3$
$\Rightarrow 2=3$ (vô lý - loại)
Nếu $x<1$ thì $(*)$ trở thành:
$3-x+1-x=3$
$\Rightarrow 4-2x=3$
$\Rightarrow x=\frac{1}{2}$ (tm)
Vậy..........
b.
Ta có: $P(x)=2(|x-1|+|x-3|)=2(|x-1|+|3-x|)\geq 2|x-1+3-x|=2.2=4$
Vậy $P(x)_{\min}=4$
Giá trị này đạt tại $(x-1)(3-x)\geq 0$
$\Rightarrow 1\leq x\leq 3$
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
chúc bạn học tốt
Bài 1 :
\(a,P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2x-6}{x\left(x+6\right)}\)
\(=\frac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}=\frac{6\left(2x-6\right)}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}\)
\(=\frac{6}{x-6}\)
\(b,\)Với \(x\ne-6;x\ne6;x\ne0;x\ne3\) Thì
\(P=1\Rightarrow\frac{6}{X-6}=1\Rightarrow6=x-6\Rightarrow x=12\)(Thỏa mãn \(ĐKXĐ\))
\(c,\)Ta có :
\(P< 0\Rightarrow\frac{6}{X-6}< 0\Rightarrow X-6< 0\Rightarrow X< 6\)
Do : \(x\ne-6;x\ne6;x\ne0;x\ne3\) ,Nên với \(x< 6\)và \(x\ne-6;x\ne0;x\ne3\) thì \(P< 0\)