Biết dãy số \(\left(u_n\right)\) thỏa mãn \(\left|u_n-1\right|< \dfrac{1}{n^3}\) với mọi n. Chứng minh rằng \(\lim\limits u_n=1\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.
Bước cơ sở: Ta thấy rằng u1 = 2 > 1.
Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.
Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:
uk+1 = uk-2015 + uk + 1/uk - uk + 3
Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.
Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.
Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.
b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.
Từ công thức cho dãy (Un), ta có:
uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i
Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:
uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i
= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)
= 2uk+1 - 2uk + 2015
Do đó, ta có thể viết lại tổng như sau:
∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1
= 2(u12 - u2) + 2015(12)
Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.
\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
Vì lim = 0 nên || có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
Mặt khác, ta có |un -1| < = || với mọi n. Nếu |un -1| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là lim (un -1) = 0. Do đó lim un = 1.
Có \(lim\dfrac{1}{n^3}=0\) mà \(\left|u_n-1\right|< \dfrac{1}{n^3}\) nên \(lim\left|u_n-1\right|=0\).
Suy ra: \(lim\left(u_n-1\right)=0\)\(\Leftrightarrow limu_n=1\).