K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Vì lim = 0 nên || có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Mặt khác, ta có |un -1| < = || với mọi n. Nếu |un -1| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là lim (un -1) = 0. Do đó lim un = 1.



26 tháng 5 2017

\(lim\dfrac{1}{n^3}=0\)\(\left|u_n-1\right|< \dfrac{1}{n^3}\) nên \(lim\left|u_n-1\right|=0\).
Suy ra: \(lim\left(u_n-1\right)=0\)\(\Leftrightarrow limu_n=1\).

10 tháng 9 2023

a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.

Bước cơ sở: Ta thấy rằng u1 = 2 > 1.

Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.

Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:

uk+1 = uk-2015 + uk + 1/uk - uk + 3

Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.

Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.

Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.

b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.

Từ công thức cho dãy (Un), ta có:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)

= 2uk+1 - 2uk + 2015

Do đó, ta có thể viết lại tổng như sau:

∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1

= 2(u12 - u2) + 2015(12)

Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.

4 tháng 4 2017

+ Với mọi n ∈ N*, ta có:

|un – 2| ≤ vn ⇔ -vn ≤ un – 2 ≤ vn

+ Mà lim (-vn) = lim (vn) = 0 nên

lim (un – 2) = 0 ⇔ lim un – lim 2 = 0 ⇔ lim un = 2


HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)

=> Luôn đúng

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Vì \(\lim \left( {8 + \frac{1}{n} - 8} \right) = \lim \frac{1}{n} = 0\) nên \(\lim {u_n} = 8.\)

Vì \(\lim \left( {4 - \frac{2}{n} - 4} \right) = \lim \frac{{ - 2}}{n} = 0\) nên \(\lim {v_n} = 4.\)

b) \({u_n} + {v_n} = 8 + \frac{1}{n} + 4 - \frac{2}{n} = 12 - \frac{1}{n}\)

Vì \(\lim \left( {12 - \frac{1}{n} - 12} \right) = \lim \frac{{ - 1}}{n} = 0\) nên \(\lim \left( {{u_n} + {v_n}} \right) = 12.\)

Mà \(\lim {u_n} + \lim {v_n} = 12\)

Do đó \(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n}.\)

c) \({u_n}.{v_n} = \left( {8 + \frac{1}{n}} \right).\left( {4 - \frac{2}{n}} \right) = 32 - \frac{{14}}{n} - \frac{2}{{{n^2}}}\)

Sử dụng kết quả của ý b ta có \(\lim \left( {32 - \frac{{14}}{n} - \frac{2}{{{n^2}}}} \right) = \lim 32 - \lim \frac{{14}}{n} - \lim \frac{2}{{{n^2}}} = 32\)

Mà \(\left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right) = 32\)

Do đó \(\lim \left( {{u_n}.{v_n}} \right) = \left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right).\)