Cho hình trụ bán kính r và có chiều cao cũng bằng r. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy, còn cạnh BC và AD không phải là đường sin của hình trụ. Tính diện tích của hình vuông đó và côsin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi C C 1 và D D 1 là hai đường sinh của khối trụ
Khi đó D 1 C 1 / / = D C (1)
Đông thời ABCD là hình vuông nên AB//=DC (2)
Từ (1) và (2) suy ra AB//= D 1 C 1
Vậy A B C 1 D 1 nội tiếp đường tròn (O) nên A B C 1 D 1 là hình chữ nhật. Suy ra A C 1 là đường kính của (O)
Nghĩa là A C 1 = 2 r
Tam giác A B C 1 vuông ở B nên:
(3)
Tam giác B C C 1 vuông ở C 1 nên:
(4)
Từ (3) và (4) suy ra
Vậy diện tích hình vuông ABCD là S = A B 2 = 5 r 2 2
* Gọi α là góc hợp bởi mp(ABCD) và mặt phẳng đáy của hình trụ, ta có:
Với
Mà A B C 1 D 1 là hình chiếu của ABCD trên mặt đáy hình trụ nên:
S ' = S . cos α
Đáp án C
Phương pháp: Gọi là tâm hình vuông ⇒ I ∈ O O ' .
Sử dụng định lý Py-ta-go trong tam giác vuông để tính AB.
Cách giải:
Ta có: I B = O I 2 + O B 2 = 9 a 2 4 + 9 a 2 = 3 a 5 2
⇒ A B = B I . 2 = 3 a 10 2
Đáp án B
Giả sử hình vuông ABCD có độ dài cạnh a.
Kẻ các đường sinh AH,BK ta có
Theo pitago ta có
Hs lớp 12 không biết lên mạng tra xem có không rồi mới hỏi à.-.
Trên mạng nhiều khi không giải như cách chúng ta học đâu bạn, liệu thầy cô có biết và xem qua đáp án trên mạng không nhỉ? Không phải là có biết lên mạng tra hay không mà đã tra và muốn có 1 cách giải khác thôi ạ!
Chọn D.
Phương pháp:
Gọi M;N lần lượt là hình chiếu của A,B trên đáy còn lại không chứa A,B.
Từ đó ta sử dụng định lý Pytago để tìm cạnh của hình vuông
Sử dụng công thức: Diện tích hình vuông cạnh x bằng x2 .
Cách giải:
Xét hình trụ như trên. Gọi cạnh hình vuông ABCD là x ( x > 0)
Gọi M;N lần lượt là hình chiếu của A,B trên đáy còn lại không chứa A,B.
Vì AB / /DC; AB = DC => AB / /MN / /DC; AB = MN = DC hay MNDC là
hình bình hành tâm O’.
Lại có MD = NC = 2a nên MNDC là hình chữ nhật.
Suy ra
Hạ đường sinh AA1 vuông góc với đáy chứa cạnh CD. Khi đó góc ADA1 là góc giữa hai mặt phẳng hình vuông và mặt đáy.
Vì góc A1DC = 1v nên A1C là đường kính.
Gọi cạnh hình vuông là a.
Ta có
a2 = AD2 = AA12 + A1D2
mà AA1 = h = r, nên ta có:
A1D2 + DC2 = A1C2;
a2 – r2 + a2 = 4r2;
⇒a2=52r2
Vậy diện tích hình vuông là: SABC=a2=52r2 Gọi δ = góc ADA1 là góc tạo bởi mặt phẳng hình vuông và đáy, ta có: sinδ = A1AAD=ra=√25