Nêu phương pháp chứng minh 3 đường thẳng đồng quy ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh ba đường thẳng đồng quy, ta chứng minh:
– Ba đường thẳng ấy không đồng phẳng và đôi một cắt nhau.
– Ba đường thẳng ấy là các giao tuyến của ba mặt phẳng phân biệt đôi một cắt nhau và chúng không song song.
- Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó.
- Sử dụng tính chất đồng quy trong tam giác:
+ Ba đường trung tuyến của tam giác đồng quy tại trọng tâm tam giác.
+ Ba đường phân giác.đồng quy tại tâm đường tròn nội tiếp tam giác.
+ Ba đường trung trực đồng quy tại tâm đường tròn ngoại tiếp tam giác.
+ Ba đường cao đồng quy tại trực tâm tam giác.
- Đặc biệt ba điểm trọng tâm, trực tâm và tâm đường tròn ngoại tiếp thẳng hàng nhau. Đường thẳng đi qua ba điểm đó được gọi là đường thẳng Euler của tam giác
- Sử dụng định lý Ceva: Cho tam giác ABC và ba điểm bất kì M,N,P nằm trên ba cạnh BC,CA,AB. Khi đó ba đường thẳng AM,BN,CP đồng quy khi và chỉ khi :
\(\frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=1\)
1.Sử dụng tính chất đồng quy của ba đường trung tuyến, đường cao, phân giác, trung trực trong tam gíac
2.Sử dụng tính chất của đường chéo của các tứ giác đặc biệt
hứng minh đường thẳng song song với đường thẳng:
Để chứng minh hai đường thẳng song song, ta sử dụng các định lí.
- Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng qui hoặc đôi một song song với nhau.
- Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
- Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
- Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.
- Hai mặt phẳng phân biệt cùng song song với với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Một mặt phẳng cắt hai mặt phẳng song song cho hai giao tuyến song song.
- Sử dụng các phương pháp của hình học phẳng. Tính chất đường trung bình, định lí Ta-lét đảo, cạnh đối hình bình hành…
- Sử dụng tính chất về cạnh bên, cạnh đáy của hình lăng trụ.
Chứng minh đường thẳng song song với mặt phẳng
- Chứng minh d song song với đường thẳng d’ nằm trong (α) và d không thuộc(α).
- Có hai mặt phẳng song song, bất kì đường nào nằm trong hai mặt phẳng này cũng song song với mặt phẳng kia.
Muốn chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó là các điểm chung của hai mặt phẳng phân biệt. Khi đó chúng sẽ thẳng hàng trên giao tuyến của hai mặt phẳng đó
a: Gọi (d): y=ax+b là phương trình đường thẳng BC
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=-1\\4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy: y=2x+1
b: Khi y=3 thì x+6=7
=>x=1
Thay x=1 và y=3 vào y=2x+1, ta được:
\(2\cdot1+1=3\)(đúng)
=>Ba đường đồng quy
c: \(\overrightarrow{AB}=\left(-3;-6\right)\)
\(\overrightarrow{BC}=\left(5;10\right)\)
Vì \(\dfrac{-3}{5}=\dfrac{-6}{10}\)
nên A,B,C thẳng hàng
Muốn chứng minh ba đường thẳng đồng quy ta chứng minh giao điểm của hai đường này là điểm chung của hai mặt phẳng mà giao tuyến là đường thứ ba