K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

\(P=\dfrac{x-y}{x+y}\)

=> \(P^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}\) (*)

Thay x2 + y2 = \(\dfrac{50}{7}xy\) vào (*), ta có:

\(P^2=\dfrac{\dfrac{50}{7}xy-2xy}{\dfrac{50}{7}xy+2xy}=\dfrac{\dfrac{36}{7}xy}{\dfrac{64}{7}xy}=\dfrac{9}{16}\)

=> \(P=\sqrt{\dfrac{9}{16}}=\sqrt{\left(\pm\dfrac{3}{4}\right)^2}=\pm\dfrac{3}{4}\)

mà y > x > 0

=> P = 0,75

23 tháng 5 2017

Phương An:hình như bạn bị nhầm thì phải

y>x> 0 => x-y < 0 và x+y > 0 => P < 0 chứ bạn

nếu bình luận thì tag tên mk vào nhé !

13 tháng 5 2018

\(x^2+y^2=\dfrac{50}{7}xy\)

\(\Leftrightarrow x^2-\dfrac{50}{7}xy+y^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7y\left(loai\right)\\x=\dfrac{1}{7}y\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{x-y}{x+y}=\dfrac{\dfrac{1}{7}y-y}{\dfrac{1}{7}y+y}\)

\(\Rightarrow P=-\dfrac{3}{4}=-0,75\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)

\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)

\(\Rightarrow x+y+z\geq 1\)

Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)

Vậy \(A_{\min}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

2 tháng 5 2017

\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\Rightarrow\dfrac{x^2+y^2}{10}=\dfrac{xy}{3}\)

Đặt \(\dfrac{x^2+y^2}{10}=\dfrac{xy}{3}=k\) (k > 0)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=10k\\xy=3k\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+2xy=10k+2.3k=16k\)

\(\Leftrightarrow\left(x+y\right)^2=16k\Rightarrow x+y=4\sqrt{k}\)

\(\Rightarrow x^2+y^2-2xy=10k-2.3k=4k\)

\(\Leftrightarrow\left(x-y\right)^2=4k\Rightarrow x-y=2\sqrt{k}\)

Ta có \(M=\dfrac{x-y}{x+y}=\dfrac{2\sqrt{k}}{4\sqrt{k}}=\dfrac{1}{2}\)

5 tháng 12 2021

\(x^2+y^2-z^2=x^2+\left(y-z\right)\left(y+z\right)=x^2-x\left(y-z\right)=x\left(x-y+z\right)=x\left(-y-y\right)=-2xy\)

Tương tự \(x^2+z^2-y^2=-2xz;y^2+z^2-x^2=-2yz\)

Cộng VTV:

\(\Leftrightarrow\text{Biểu thức }=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}=-\dfrac{1}{8}\)

2 tháng 11 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:

\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=

\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)

Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)

7 tháng 2 2018

Toán lớp 6? -_-

\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\)

*Áp dụng bất đẳng thức Cauchy, ta có:

\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)

\(P\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}+\dfrac{7}{xy+yz+zx}\)

*Áp dụng bất đẳng thức Cauchy-Schwarz, ta có:

\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}\)

\(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)}=21\)

\(\Rightarrow P\ge9+21=30\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

15 tháng 11 2021

\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)

15 tháng 11 2021

ĐKXĐ: \(x\ne y\)

a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)

b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)

\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)

 

15 tháng 11 2021

Sửa lại ĐKXĐ là \(x\ne\pm y\) nha