\(\dfrac{50}{7}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

\(x^2+y^2=\dfrac{50}{7}xy\)

\(\Leftrightarrow x^2-\dfrac{50}{7}xy+y^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7y\left(loai\right)\\x=\dfrac{1}{7}y\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{x-y}{x+y}=\dfrac{\dfrac{1}{7}y-y}{\dfrac{1}{7}y+y}\)

\(\Rightarrow P=-\dfrac{3}{4}=-0,75\)

27 tháng 3 2017

\(P=\dfrac{x-y}{x+y}\)

=> \(P^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}\) (*)

Thay x2 + y2 = \(\dfrac{50}{7}xy\) vào (*), ta có:

\(P^2=\dfrac{\dfrac{50}{7}xy-2xy}{\dfrac{50}{7}xy+2xy}=\dfrac{\dfrac{36}{7}xy}{\dfrac{64}{7}xy}=\dfrac{9}{16}\)

=> \(P=\sqrt{\dfrac{9}{16}}=\sqrt{\left(\pm\dfrac{3}{4}\right)^2}=\pm\dfrac{3}{4}\)

mà y > x > 0

=> P = 0,75

23 tháng 5 2017

Phương An:hình như bạn bị nhầm thì phải

y>x> 0 => x-y < 0 và x+y > 0 => P < 0 chứ bạn

nếu bình luận thì tag tên mk vào nhé !

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

8 tháng 3 2017

2)

Theo hệ quả của bất đẳng thức Cauchy ta có

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )

Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)

Vậy \(C_{min}=\dfrac{9}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)

8 tháng 3 2017

Mấy dạng này mik ngu nhất luôn bạn ạ~~

8 tháng 5 2018

a) A = ( 6x + 7)( 2x - 3) - ( 4x + 1)( 3x - \(\dfrac{7}{4}\))

A = 12x2 - 18x + 14x - 21 - ( 12x2 - 7x + 3x - \(\dfrac{7}{4}\))

A = \(\dfrac{-77}{4}\)

Vậy biểu thức trên ko phụ thuộc vào biến

b) x2 - 2y2 = xy

⇔ x2 - xy - 2y2 = 0

⇔ x2 + xy - 2xy - 2y2 = 0

⇔ x( x + y) - 2y( x + y) = 0

⇔ ( x - 2y )( x + y ) = 0

Do : x + y # 0

⇒ x - 2y = 0

⇔ x = 2y

Ta có : P = \(\dfrac{x-y}{x+y}\) ( x + y # 0 ; y # 0)

P = \(\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

KL....

31 tháng 12 2017

\(B=\dfrac{1}{x}+\dfrac{1}{y}\\ =\dfrac{x+y}{xy}=\dfrac{5}{6}\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\\ =5^3-3.6.5\\ =125-90\\ =35\)

31 tháng 12 2017

A = x2 + y2

= (x2 + 2xy + y2) - 2xy

= (x + y)2 - 2xy

= 52 - 2.6

= 25 - 12

= 13

F = x3 + y3

= (x + y)3 - 3xy(x + y)

= 53 - 3.6.5

= 125 - 90

= 35

28 tháng 10 2018

(x-y).(x2+xy+y2)+2y3

=(x3-y3)+2y3

=x3-y3+2y3

=x3+y3

Thay x=và y=\(\dfrac{1}{3}\)vào x3+y3

x3+y3=\(\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3\)=\(\dfrac{1}{3}\)

CHÚC BN HỌC TỐT

30 tháng 10 2018

kcj