Tam giác ABC cân tại A, các đường cao BD,CE.Qua C kẻ đường thẳng vuông góc vs AC cắt AB tại F.
a,CM: AB^2=AE.AF
b,CM: CE/ CF=BE/BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAFH và ΔADB có
\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔAFH∼ΔADB(g-g)
b) Xét ΔBHF và ΔCHE có
\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)
\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)
Do đó: ΔBHF∼ΔCHE(g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)
hay \(BH\cdot HE=CH\cdot HF\)(đpcm)
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
Câu a/
Xét ∆AEC và ∆ACF, có:
Góc A là góc chung
Góc E = góc C = 90o
=>∆AEC đồng dạng ∆ACF (góc-góc)
=>\(\dfrac{AC}{AF}=\dfrac{AE}{AC}\) (Cặp cạnh tương ứng tỉ lệ)
=> AC2=AE.AF
Câu b/
Xét hai tam giác vuông: ∆EBC và ∆DCB, có:
Cạnh BC là cạnh chung
Góc EBC = góc DCB (vì ABC là tam giác cân)
=> ∆EBC = ∆DCB (cạnh huyền - góc nhọc)
=> Góc C1 = góc B1 (góc tương ứng) (1)
Mà ta có BD vuông góc AC, CF vuông góc AC => BD // CF
=> Góc B1 = góc C2 (so le trong) (2)
Từ (1) và (2) => Góc C1 = góc C2 => CB là tia phân giác góc ECF
=> \(\dfrac{CE}{CF}=\dfrac{BE}{BF}\)(tính chất đường phân giác) (điều phải chứng minh)