Cho : A = 1 + 32 + 34 + 36 + ... + 32010 . Tính : 8A - 32012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
Ta có: \(M=3^{2012}-3^{2011}+3^{2010}-3^{2009}\)
\(=\left(3^{2012}+3^{2010}\right)-\left(3^{2011}+3^{2009}\right)\)
\(=3^{2010}\cdot\left(3^2+1\right)-3^{2009}\left(3^2+1\right)\)
\(=\left(3^2+1\right)\cdot\left(3^{2010}-3^{2009}\right)\)
\(=10\cdot3^{2009}\cdot\left(3-1\right)⋮10\)(đpcm)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Tổng trên = (31+32012).[(32012-31:1+1] : 2 = 32043 . 31982 : 2 = 42043 . 15991 lẻ
=> tổng trên ko chia hết cho 120
k mk nha
không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Tổng 31 + 32 + 33 + 34 + 35 + … + 32012 không chia hết cho 120 vì tổng trên là một số lẻ, không chia hết cho một số chẵn.
tổng trên không chia hết cho 120. Vì các số trên có tổng là số lẻ lên không chia hết cho số chẵn
9A=\(3^2+3^4+3^6+...+3^{2012}\)
9A-A=\(\left(3^2+3^4+3^6+...+3^{2012}\right)-\left(1+3^2+3^4+...+3^{2010}\right)\)
8A=\(\left(3^2+3^4+3^6+...+3^{2010}\right)+3^{2012}-1-\left(3^2+3^4+3^6+...+3^{2010}\right)\)
8A=\(3^{2012}-1\)
=>8A-\(3^{2012}\)=-1