Giải hệ phương trình
\(\begin{cases} x^2 + y^2 = 5\\ x^2 + xy +1 = 2x +y \end{cases} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Hệ tương đương
\(\hept{\begin{cases}\left(x+y\right)^2-2xy-2\left(x+y\right)=6\\x+y-xy=5\end{cases}}\)
S = x + y, P = xy
=>
\(\hept{\begin{cases}S^2-2P-2S=6\\S-P=5\end{cases}}\)
Thay P = S - 5 vào PT trên
=> S2 - 2(S - 5) - 2S = 6
<=> S2 - 4S + 4 = 0
<=> S = 2
=> P = -3
=> x, y là 1 nghiệm của PT
X2 - 2X - 3 = 0
=>
x = -1, y = 3
Hoặc x = 3, y = -1
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+2x^2y+y^2+xy=\frac{-5}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y+xy\left(x^2+y\right)+xy=\frac{-5}{4}\left(1\right)\\\left(x^2+y\right)^2+xy=\frac{-5}{4}\left(2\right)\end{cases}}}\)
Đặt x2 + y = a ; xy = b
Khi đó hệ phương trình trở thành : \(\hept{\begin{cases}a+ab+b=\frac{-5}{4}\\a^2+b=\frac{-5}{4}\end{cases}}\)\(\Leftrightarrow a+ab-a^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\b-a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+y=0\\xy-\left(x^2+y\right)+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-x^2\\x^2+y=xy+1\end{cases}}}\)
với y = -x2 thay vào ( 2 ), ta có : x . ( -x2 ) = \(\frac{-5}{4}\)\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\Rightarrow y=-\sqrt[3]{\frac{25}{16}}\)
với x2 + y = xy + 1 \(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)=0\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=y-1\end{cases}}\)từ đó suy ra \(y=\frac{-3}{2}\)
Vậy ....
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
a/
\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)
(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)
\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)
\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)
\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)
Xin làm ý b
\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = y = 1
câu 1 bạn có cho đề sai ko :
bạn có thể kham khảo bài ;
https://olm.vn/hoi-dap/detail/203671433762.html
Từ pt thứ 2 của hệ ta có
\(x^2-2x+1+xy-y=0\)
\(\Leftrightarrow\left(x-1\right)^2+y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1-y\end{matrix}\right.\)
Với x =1 thay vào pt đầu của hệ ta được
\(y^2=4\Leftrightarrow y=\pm2\)
Với x = 1-y thay vào pt đầu của hệ ta được
\(\left(1-y\right)^2+y^2=5\)
\(\Leftrightarrow2y^2-2y-4=0\)
\(\Leftrightarrow y^2-y-2=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
KL : ...