*Tính nhanh:
A = 1/3+ 1/3(mũ 2) +1/3(mũ 3)+.....+1/3(mũ 8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
B=[(45.79+45.21)]:90-5^2]:5+2^3 B=[(45.79+45.21):90-25]:5+8 B=[(45.(79+21):65]:13 B=[(45.100):65]:13 B=[4500:65]:13 B=4500:65:13
Bài 2:
\(3A=3+3^2+...+3^{101}\)
=>2A=3^101-1
=>\(A=\dfrac{3^{101}-1}{2}\)
3A= 1+ \(\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^7\)
2A= 1 - \(\left(\frac{1}{3}\right)^8\)
A= \(\frac{1-\left(\frac{1}{3}\right)^8}{2}\)
Vậy....
Mình làm bài tổng quát nha để bạn hiểu sau rồi bạn thay vào .
Đặt \(S_1=1+2+...+n\)
\(\Rightarrow S_1=\frac{n\left(n+1\right)}{2}\)
Đặt \(S_2=1^2+2^2+...+n^2\)
Ta có:
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
..................................................................................
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế n thẳng đẳng thức trên ta được :
\(\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+3.\left(1+2+3+...+n\right)+n\)
\(\Rightarrow\left(n+1\right)^3=1^3+3.\left(1^2+2^2+...+n^2\right)+\frac{3n\left(n+1\right)}{2}+n\)
\(\Rightarrow3.\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
Hay \(3S_2=\left(n+1\right)\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(\Rightarrow3S_2=\left(n+1\right)\left(n^2+\frac{n}{2}\right)\)
\(\Rightarrow3S_2=\frac{1}{2}n\left(n+1\right)\left(2n+1\right)\)
\(\Rightarrow S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Đặt \(S_3=1^3+2^3+...+n^3\)
Ta có:
\(\left(1+1\right)^4=1^4+4.1^3+6.1^2+4.1+1\)
\(\left(2+1\right)^4=2^4+4.2^3+6.2^2+4.2+1\)
........................................................................................
\(\left(n+1\right)^4=n^4+4n^3+6n^2+4n+1\)
Cộng từng vế n đẳng thức trên ta được :
\(\left(n+1\right)^4=1^4+4.\left(1^3+2^3+...+n^3\right)+6.\left(1^2+2^2+...+n^2\right)+4.\left(1+2+...+n\right)+n\)
\(\Rightarrow\left(n+1\right)^4=1+4S_3+6S_2+4S_1+n\)
Đã chứng minh \(S_1=\frac{n\left(n+1\right)}{2}\)
\(S_2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Từ đó tính được :
\(S_3=\frac{n^2\left(n+1\right)^2}{4}\)
đó là công thức giờ chỉ vệc thay vào
\(1^3+2^3+3^3+4^3+5^3=\frac{5^2\left(5+1\right)^2}{4}=225\)
Đặt A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
3A=3/2.5+3/5.8+....+3/17.20
3A=1/2-1/5+1/5-1/8+...+1/17-1/20
3A=1/2-1/20
3A=9/20
2)
Giữ nguyên p/s 1/2^2
Ta có:1/3^2<1/2.3
1/4^2<1/3.4
...............
1/n^2<1/(n-1).n
=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n
=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n
=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n
=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4
3)
2B=2/3.5+2/5.7+....+2/47.49+2/49.51
2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51
2B=1/3-1/51
2B=16/51
B=16/51:2
B=8/51
A=1+1/2+1/2^2+...+1/2^2010
2A=2+1+1/2+....+1/2^2009
2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)
A=2-1/2^2010
3A = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{39}}\)
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{40}}\)
=> 2A = 3A - A = \(1-\frac{1}{3^{40}}\)=> \(\frac{1-\frac{1}{3^{40}}}{2}=\frac{1}{2}-\frac{1}{3^{40}\cdot2}\)
Mấy câu còn là thì tương tự nhé c
câu b nhân vào \(2^2\)
câu c nhân vào 4
A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
A.3=\(3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.3=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\)
A.3-A=\(\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.2=\(1-\dfrac{1}{3^8}\)
A=\(\dfrac{1-\dfrac{1}{3^8}}{2}=\dfrac{3280}{6561}\)
Kết quả : \(\dfrac{3316}{6561}\)