K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

3A = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{39}}\)

 A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{40}}\)

=> 2A = 3A - A = \(1-\frac{1}{3^{40}}\)=> \(\frac{1-\frac{1}{3^{40}}}{2}=\frac{1}{2}-\frac{1}{3^{40}\cdot2}\)

Mấy câu còn là thì tương tự nhé c

câu b nhân vào \(2^2\)

câu c nhân vào 4

31 tháng 7 2016

Bài 1: a)  \(M=1+5+5^2+...+5^{100}\)

\(5M=5+5^2+5^3+...+5^{101}\)

\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)

\(4M=5^{101}-1\)

\(M=\frac{5^{101}-1}{4}\)

b) \(N=2+2^2+...+2^{100}\)

\(2N=2^2+2^3+...+2^{101}\)

\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(N=2^{101}-2\)

31 tháng 7 2016

Bài 2:

a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\) 

\(32^{16}=\left(2^5\right)^{16}=2^{80}\)

Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)

26 tháng 9 2017

a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10

Gọi biểu thức trên là A , ta có :

A = 2^1+2^2 9+2^3+ 2^4 +...+2^10

2A=     2^2 +2^3+2^4+...+2^10+2^11

2A-A=2^11-2^1

A=2^10

b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết

5A = 5^2+5^3+...+5^25 5^26

5A-A=5^26 - 5^1

A=5^25

30 tháng 9 2017

xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót

8 tháng 12 2019

\(a.x-143=57\)

\(x=200\)

\(b.\left(8x-12\right):4=3^3\)

\(8x-12=27.4\)

\(8x-12=108\)

\(8x=120\)

\(x=15\)

8 tháng 12 2019

\(d.10+2x=4^2\)

\(2x=16-10\)

\(2x=6\)

\(x=3\)

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

16 tháng 7 2019

B=[(45.79+45.21)]:90-5^2]:5+2^3                                  B=[(45.79+45.21):90-25]:5+8                                      B=[(45.(79+21):65]:13                                                  B=[(45.100):65]:13                                                        B=[4500:65]:13                                                           B=4500:65:13                                                       

12 tháng 10 2024

Ngu xi 

 

 

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 7 2017
tự hỏi và tự trả lời :)
19 tháng 4 2017

Đặt A=1/10+1/40+1/88+1/154+1/238+1/340

A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20

3A=3/2.5+3/5.8+....+3/17.20

3A=1/2-1/5+1/5-1/8+...+1/17-1/20

3A=1/2-1/20

3A=9/20

2)

Giữ nguyên p/s 1/2^2

Ta có:1/3^2<1/2.3

         1/4^2<1/3.4

        ...............

          1/n^2<1/(n-1).n

=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n

=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n

=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n

=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4

3)

2B=2/3.5+2/5.7+....+2/47.49+2/49.51

2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51

2B=1/3-1/51

2B=16/51

B=16/51:2

B=8/51

19 tháng 4 2017

A=1+1/2+1/2^2+...+1/2^2010

2A=2+1+1/2+....+1/2^2009

2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)

A=2-1/2^2010

I don't now

or no I don't

..................

sorry

17 tháng 8 2018

A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 

2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100

2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - (  2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 ) 

A = 2^100 - 2^3 

B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 

5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 

5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )

4B = 5^51 - 1 

B = 5^51 - 1 / 4