cho S = 21 + 22 + 23 +...+ 2101 + 2102
Tìm n\(\in\) N biết S+2 =2n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hello
tui thì ko biết toán lớp 6
vô cho hay
đùa vậy thôi
'ủa
chị là khởi my thật hở
nice to meet you
A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101
A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101
Xét dãy số:0; 1; 2; 3;...; 100; 101
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (101 - 0) : 1 + 1 = 102 (số)
Vì 102 : 3 = 34
Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được
A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)
A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)
A = (1 + 21 + 22).(1 + 23 + ...+ 299)
A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)
a ) do n+5 chia het cho n-2 => (n-2)+7 chia het cho n-2
ma n-2 chia het cho n-2
=>7 chia het cho n-2
=> n-2 thuoc {1;2;-1;-2}
=> n thuoc {3;4;1;0}
b) do n-1 chia het cho n-1 => 2.(n-1) chia het cho n-1=> 2n- 2 chia het cho n-1
ma 2n chia het cho n-1
=>-2 chia het cho n-1
=>n-1 thuoc {1;2;-1;-2}
=>n thuoc {2;3;0;-1
a) n+5 chia hết cho n-2
=>n-2+7 chia hết cho n-2
Mà n-2 chia hết cho n-2
=>7 chia hết cho n-2
=>n-2\(\in\)Ư(7)
=>n-2\(\in\){-7;-1;1;7}
=>n\(\in\){-5;1;3;9}
b) 2n chia hết cho n-1
=>n+n chia hết cho n-1
=>n-1+n-1+2 chia hết cho n-1
=>2(n-1)+2 chia hết cho n-1
Mà 2(n-1) chia hết cho n-1
=>2 chia hết cho n-1
=>n-1\(\in\){-2;-1;1;2}
=>n\(\in\){-1;0;2;3}
a) 7n + 13 và 2n + 4
ƯC (7n + 13 ; 2n + 4) = d
\(\Rightarrow\left[{}\begin{matrix}\text{ 7n + 13 ⋮ d}\\\text{2n + 4 ⋮ d}\end{matrix}\right.\)
⇒ 7(2n + 4) - 2(7n + 13) ⋮ d
⇒ 2 ⋮ d
d = 1; 2
Xét thấy 7n + 13 không chia hết cho 2 ⇒ d = 1
Để 7n + 13 và 2n + 4 là hai số sau nguyên tố cùng nhau
Thì 7n + 13 là lẻ ⇒ 7n chẵn ⇒ n chẵn
➤ Vậy n chẵn thì hai số đó là hai số nguyên tố cùng nhau
b) 9n + 24 và 3n + 4
\(\Rightarrow\left[{}\begin{matrix}\text{9n + 24 ⋮ d }\\\text{3n + 4 ⋮ d }\end{matrix}\right.\)
⇒ 9n + 24 - 3(3n + 4) ⋮ d
⇒ 12 ⋮ d
d = 1; 2; 3; 4; 6; 12
3n + 4 không chia hết cho 3; 4; 6; 12 ⇒ d = 1; 2
Để 9n + 24 và 3n + 4 là hai số sau nguyên tố cùng nhau
Thì 9n + 24 là lẻ ⇒ 9n lẻ ⇒ lẻ
➤ Vậy n lẻ thì hai số đó là hai số nguyên tố cùng nhau
c) 18n + 3 và 21n + 7
\(\Rightarrow\left[{}\begin{matrix}\text{18n + 3 ⋮ d}\\\text{21n + 7 ⋮ d }\end{matrix}\right.\)
⇒ 6(21 + 7) - 7(18 + 3) ⋮ d
⇒ 21 ⋮ d
d = 3; 7
18n + 3 không chia hết cho 3 ⇒ d = 7
Để 18n + 3 và 21n + 7 là hai số sau nguyên tố cùng nhau
Thì n = 7k - 1 (k ∈ N)
➤ Vậy n = 7k - 1 (k ∈ N) thì hai số đó là hai số nguyên tố cùng nhau
S = 21 + 22 + 23 + ... + 2102
2S = 22 + 23 + 24 + ... + 2103
2S - S = ( 22 + 23 + 24 + ... + 2103) - (2 + 22 + 23 + ... + 2102)
= 2103 - 2
Thay vào ta được:
2103 - 2 + 2 = 2n
2103 = 2n
=> n = 103