giải hộ tui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây trồng của ba lớp `7A,7B,7C` lần lượt là `x,y,z` (cây; `x,y,z>0`)
`-` Theo đề bài, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) và `x+y+z=120`
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{120}{12}=12\)
\(\Rightarrow\\ x=3\cdot10=30\\ y=4\cdot10=40\\ z=5\cdot10=50\)
Vậy, số cây trồng được của ba lớp `7A,7B,7C` lần lượt là `30,40,50` cây.
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=6\\2x-y=3\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(\dfrac{3}{2};0\right)\)
a) Ta có: \(\left|x+1\right|\ge0\)
\(\Rightarrow A=\left|x+1\right|+5\ge5\)
Dấu " = " khi \(x+1=0\Rightarrow x=-1\)
Vậy \(MIN_A=5\) khi x = -1
b) Ta có: \(B=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(B\ge\left|x-1+3-x\right|=\left|-2\right|=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\3-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\Rightarrow1\le x\le3\)
Vậy \(MIN_B=2\) khi \(1\le x\le3\)
c) Ta có: \(C=x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow C=\left(x+1\right)^2+5\ge5\)
Dấu " = " khi \(x+1=0\Rightarrow x=-1\)
Vậy \(MIN_C=5\) khi x = -1
d) \(D=x^2-2x+7=x^2-2x+1+6=\left(x-1\right)^2+6\)
Ta có: \(\left(x-1\right)^2\ge0\)
\(\Rightarrow D=\left(x-1\right)^2+6\ge6\)
Dấu " = " khi \(x-1=0\Rightarrow x=1\)
Vậy \(MIN_B=6\) khi x = 1
thanks nha