Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây trồng của ba lớp `7A,7B,7C` lần lượt là `x,y,z` (cây; `x,y,z>0`)
`-` Theo đề bài, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) và `x+y+z=120`
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{120}{12}=12\)
\(\Rightarrow\\ x=3\cdot10=30\\ y=4\cdot10=40\\ z=5\cdot10=50\)
Vậy, số cây trồng được của ba lớp `7A,7B,7C` lần lượt là `30,40,50` cây.
=>ac-a^2+bc-ab=ac-bc+a^2-ab
=>-2a^2+2bc=0
=>a^2-bc=0
=>a^2=bc
=>a/b=c/a
=>ĐPCM
Bài 5:
Đợt 2 nhập: 3,15 - 0,7= 2,45(tấn)
Đợt 3 nhập: 2,45 + 1,05 = 3,5(tấn)
3 lần số gạo trung bình 4 đợt là: 2,45 + 3,5 + 3,15 - 0,1= 9(tấn)
Đợt 4 nhâp: 9:3 - 0,1= 2,9(tấn)
Đáp số: đợt thứ tư nhập về 2,9 tấn gạo
\(\left(\dfrac{-1}{5}+\dfrac{3}{7}\right):\dfrac{2}{11}+\left(\dfrac{-4}{5}+\dfrac{4}{7}\right):\dfrac{2}{11}\)
\(=\dfrac{8}{35}:\dfrac{2}{11}+\dfrac{-8}{35}:\dfrac{2}{11}\)
\(=\dfrac{2}{11}:\left(\dfrac{8}{35}+\dfrac{-8}{35}\right)\)
\(=\dfrac{2}{11}:0=0\)
Ta có:\(\frac{\left[x\left(x-2\right)\right]}{x^2+8x-20}+12x-3=\frac{x\left(x-2\right)}{x^2-2x+10x-20}+12x-3\)
\(=\frac{x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}+12x-3=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}+12x-3\)
\(=\frac{x}{x+10}+12x-3=\frac{x+\left(12x-3\right).\left(x+10\right)}{x+10}=\frac{x+12x^2+120x-3x-30}{x+10}\)
\(=\frac{12x^2+118x-30}{x+10}\)
ĐK: a,b thuộc Q
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1
P/s: Đăng 1 lần thôi là ng̀ ta bt rồi, mắc chi đăng lắm v?
ĐKXĐ: b khác 0
Xét 2 TH:
với a khác 0 thì ab=a/b=>b=1/b=>b^2=1=>b=1
thay b=1 vào a+b=ab có a+1=a (vô lĩ)
với a bằng 0 thì a+b=a/b=>0+b=0=>b=0 (không thỏa mãn ĐKXĐ)
vậy ko cá các cặp số hữu tỉ a,b thỏa mãn cái đề bài
và
a) Ta có: \(\left|x+1\right|\ge0\)
\(\Rightarrow A=\left|x+1\right|+5\ge5\)
Dấu " = " khi \(x+1=0\Rightarrow x=-1\)
Vậy \(MIN_A=5\) khi x = -1
b) Ta có: \(B=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(B\ge\left|x-1+3-x\right|=\left|-2\right|=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\3-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\Rightarrow1\le x\le3\)
Vậy \(MIN_B=2\) khi \(1\le x\le3\)
c) Ta có: \(C=x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow C=\left(x+1\right)^2+5\ge5\)
Dấu " = " khi \(x+1=0\Rightarrow x=-1\)
Vậy \(MIN_C=5\) khi x = -1
d) \(D=x^2-2x+7=x^2-2x+1+6=\left(x-1\right)^2+6\)
Ta có: \(\left(x-1\right)^2\ge0\)
\(\Rightarrow D=\left(x-1\right)^2+6\ge6\)
Dấu " = " khi \(x-1=0\Rightarrow x=1\)
Vậy \(MIN_B=6\) khi x = 1
thanks nha