cho tam giác ABC có BC>AB . Vẽ tia phân giác góc B cắt AC tại D . C/m CD > BA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hoi pan hoc truong nao?(nhớ nói đúng sự thật ) vì tui co1 bạn tên này
Lấy K trên BC sao cho BK = BA. Nối KD
ΔDKB và ΔDAB(c.g.c)
Suy ra hai góc\(d_1=d_2\),DE=DA
Mặt khác góc CKD là góc ngoài của tam giác KBD nên gócCKD>góc D1 (1)
Góc D2 là góc ngoài của ΔDBC nên Góc D2>góc BCD (2)
Vì Góc D1=ˆD2 nên từ (1) và (2) suy ra góc CKD>gócBCD
Trong ΔKCD có góc K>góc C nên CD > DK
Hay CD > DA
Hình tự vẽ
a) ΔABC vuông tại A.
Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)
BC2 = 102 = 100 (cm)
Vì AB2 + BC2 = BC2 ( = 100 cm)
Nên ΔABC vuông tại A.
b) MA = MN.
Xét hai tam giác vuông ABM và NBM có:
BM: cạnh chung
∠ABM = ∠NBM (BM là phân giác của ∠ABC)
Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)
⇒ MA = MN (hai cạnh tương ứng)
c) ΔAMP = ΔNMC. MP > MN.
Xét hai tam giác vuông AMP và NMC có:
AM = MN (câu b)
∠AMP = ∠NMC (hai góc đối đỉnh)
Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)
⇒ PM = MC (hai cạnh tương ứng) (1)
Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)
Từ (1) và (2) suy ra: MP > MN
\(a,BC=\sqrt{\left(AB^2+AC^2\right)}=5cm\)
\(b,\)Tam giác ABD = Tam giác HBD ( cạnh huyền - góc nhọn )
\(\Rightarrow DA=DH\)
\(c,\Delta ADE=\Delta HDC\left(g.c.g\right)\)
\(\Rightarrow DE=DC\)
\(\Rightarrow\)TAM GIÁC DEC CÂN
\(d,\)Ta có :
\(DC>HC\)
\(\Rightarrow BH+DH+DC>DH+BH+HC\)
Mà \(BH=AB;DH=AD\)
\(\Rightarrow AB+AD+DC>DH+BC\)
\(\Rightarrow AB+AC>DH+BC\)