Giải giúp mình gấp nha. Cảm ơn mấy bạn.
a) x2+y2+z2=x(y+z)
b) (x+y)2=(x+1)(y-1)
c) x2+y2+z2+t2=x(y+z+t)
d) (x2+1)(y+4)(z2+9)=48xyz
e) (x+1)(y+1)(x+y)=8xy (x+y>=0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
Ta có : \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng vào bài toán có :
\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), \(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\), \(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)
Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)
P/s : Dấu "=" không chắc lắm :))
a) Tìm được A = (x- y)(x + 5y).
Thay x = 4 và y = -4 vào A tìm được A = -128.
b) Tìm được B = 9 ( x - 1 ) 2 .
Thay x = - 4 vào B tìm được B = 81 4 .
c) Tìm được C = (x - y)(y - z)(x - z).
Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.
d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.
x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1
Tính P = x + y + z
a)(x-y)3+(y-z)3+(z-x)3
=3(x-y+y-z+z-x)=3
b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
d)Áp dụng BĐT AM-GM
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+4\ge2\sqrt{4y^2}=4y\)
\(z^2+9\ge2\sqrt{9z^2}=6z\)
Nhân theo vế ta có:
\(VT=\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x\cdot4y\cdot6z=48xyz=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
e)Áp dụng BĐT AM-GM ta có:
\(x+1\ge2\sqrt{x}\)
\(y+1\ge2\sqrt{y}\)
\(x+y\ge2\sqrt{xy}\)
Nhân theo vế ta có:
\(VT=\left(x+1\right)\left(y+1\right)\left(x+y\right)\ge2\sqrt{x}\cdot2\sqrt{x}\cdot2\sqrt{xy}=8xy=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+1=2\sqrt{x}\\y+1=2\sqrt{y}\\x+y=2\sqrt{xy}\left(x+y\ge0\right)\end{matrix}\right.\)\(\Rightarrow x=y=0\)
mấy câu còn lại áp dụng HĐT thôi, khá dễ !!