PTĐT: x3 - 2x2 + 2x - 13
Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 6x + 3 ) - ( 2x - 5 ) ( 2x + 1 ) = 3 ( 2x + 1 ) - ( 2x - 5 ) ( 2x + 1 )
= ( 2x + 1 ) ( 3 - 2x + 5 ) = ( 2x + 1 ) ( 8 - 2x ) = - 2 ( 2x + 1 ) ( x - 4 )
(6x + 3) - (2x - 5)(2x + 1)
= 3(2x + 1) - (2x - 5)(2x + 1)
= (2x + 1)[3 - (2x - 5)]
= (2x + 1)(3 - 2x + 5)
= (2x + 1)(8 - 2x)
a/ \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}=\dfrac{2.\left(-1\right)^3-5\left(-1\right)-4}{\left(-1+1\right)^2}=-\dfrac{1}{0}=-\infty\)
b/ \(\lim\limits\left(x^3+2\sqrt{x^5}-1\right)=\lim\limits x^3\left(1+0-0\right)=+\infty\)
giúp em câu này với ạ https://hoc24.vn/hoi-dap/tim-kiem?id=353722985710&q=lim%C2%A0\(\dfrac{1-\dfrac{1}{x}}{1+\dfrac{1}{x}}\)%C2%A0khi+x+ti%E1%BA%BFn+t%E1%BB%9Bi+0
\(xy+2x-5y=13\\ \Rightarrow x\left(y+2\right)-5y-10=3\\ \Rightarrow x\left(y+2\right)-5\left(y+2\right)=3\\ \Rightarrow\left(x-5\right)\left(y+2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)
\(x-5\) | 3 | 1 | -3 | -1 |
\(y+2\) | 1 | 3 | -1 | -3 |
\(x\) | 8 | 6 | 2 | 4 |
\(y\) | -1 | 1 | -3 | -5 |
Vậy \(\left(x;y\right)=\left(8;-1\right);\left(6;1\right);\left(2;-3\right);\left(4;-5\right)\)
Bài 1:
a)\(Q=2x-\sqrt{x^2+2x+1}=2x-\sqrt{\left(x+1\right)^2}=2x-\left|x+1\right|\)
b)Tại x=7 thay vào Q ta được:
\(Q=2.7-\left|7+1\right|=14-8=6\)
Bài 2:
\(\sqrt{x^2-6x}+7x=13\)\(\Leftrightarrow\sqrt{x^2-6x}=13-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}13-7x\ge0\\x^2-6x=\left(13-7x\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\0=48x^2-85x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\\Delta=\left(-85\right)^2-4.48.169=-25223< 0\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
Vậy pt vô nghiệm.
A(x)+B(x)-C(x)
=x^3+2x^2+3x+1-x^3+x+1-2x^2+1=0
=>4x+3=0
=>x=-3/4
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
1: \(a^2-4b^2-2a-4b\)
\(=\left(a-2b\right)\left(a+2b\right)-2\left(a+2b\right)\)
\(=\left(a+2b\right)\left(a-2b-2\right)\)
2: \(x^3+2x^2-2x-1\)
\(=\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+3x+1\right)\)
a: Ta có: \(x^4-2x^3+2x-1\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)
b: Ta có: \(-a^4+a^3+2a^3+2a^2\)
\(=-a^2\left(a^2-a-2a-2\right)\)
c: Ta có: \(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)
\(x^3-2x^2+2x-13\)
\(=x^3-2x^2+2x-4-9\)
\(=\left(x^3-2x^2\right)+\left(2x-4\right)-9\)
\(=x^2\left(x-2\right)+2\left(x-2\right)-9\)
\(=\left(x-2\right)\left(x^2+2\right)-9\)
\(=\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}+3\right)\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}-3\right)\)