Tìm min hoặc max của
a) A= 7/3*(x^2+1)
b) 72-12x/5-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)
Vậy minA = 32 khi x = 7.
b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Bài 1 :
\(A=-x^2+6x+14\)
\(A=-x^2+6x-9+23\)
\(A=-\left(x^2-6x+9\right)+23\)
\(A=-\left(x-3\right)^2+23\)
Vì \(-\left(x-3\right)^2\le0\)
\(\Rightarrow A=-\left(x-3\right)^2+23\le23\)
\(\Rightarrow Max\left(A\right)=23\)
Bài 2 :
\(B=4x^2+12x+30\)
\(\Rightarrow B=4x^2+12x+9+21\)
\(\Rightarrow B=\left(2x+3\right)^2+21\)
Vì \(\left(2x+3\right)^2\ge0\)
\(\Rightarrow B=\left(2x+3\right)^2+21\ge21\)
\(\Rightarrow Min\left(B\right)=21\)
Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng:
\(A=\left(x+3\right)^4+\left(7-x\right)^4\ge\dfrac{1}{2}\left[\left(x+3\right)^2+\left(7-x\right)^2\right]^2\)
Tiếp tục áp dụng BĐT ban đầu trong 2 số hạng trong ngoặc vuông:
\(\Rightarrow A\ge\dfrac{1}{2}\left[\dfrac{1}{2}\left(x+3+7-x\right)^2\right]^2=1250\)
Dấu "=" xảy ra khi \(x+3=7-x\Rightarrow x=2\)
Vậy \(A_{min}=1250\) khi \(x=2\)
Không tồn tại A max
\(A=2+\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\)
Ta có:
\(\left(x+3y\right)^2\ge0;\left|x+5\right|\ge0\)
\(\Leftrightarrow\left(x+3y\right)^2+5\left|x+5\right|+14\ge14\)
\(\Leftrightarrow\frac{21}{\left(x+3y\right)^2}+5\left|x+5\right|+14\le\frac{21}{14}=\frac{3}{2}\)
\(\Leftrightarrow A\le\frac{2}{3}+\frac{3}{2}=\frac{13}{6}\)
Dấu '' = '' xảy ra khi:
\(x+5=0\Leftrightarrow x=-5\)
\(x+3y=0\Leftrightarrow y=\frac{-x}{3}=\frac{5}{3}\)
Vậy \(MaxA=\frac{13}{6}\Leftrightarrow x=-5;y=\frac{5}{3}\)
a) \(A=\dfrac{7}{3}\left(x^2+1\right)\)
Ta có:
\(x^2\ge0\forall x\\ \Rightarrow x^2+1\ge1\forall x\)
Để \(A=\dfrac{7}{3}\left(x^2+1\right)\) đạt GTNN thì \(x^2+1\) đạt GTNN
\(hay:x^2+1=1\)
Thay \(x^2+1=1\) vào \(A=\dfrac{7}{3}\left(x^2+1\right)\) ta có:
\(A=\dfrac{7}{3}.1\\ A=\dfrac{7}{3}\)
Vậy \(Max_A=\dfrac{7}{3}\) tại \(x=0\)
pạn ơi