K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)

b: \(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5\)

12 tháng 8 2021

a)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

b)\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{9^{10}\cdot5^{30}}{3^{15}\cdot5^{30}}=\dfrac{3^{20}}{3^{15}}=3^5=243\)

4 tháng 1 2022

\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

27 tháng 7

a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)

= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)

= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8

=  1 + 1 + 8

=  2 + 8

= 10

27 tháng 7

b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)

=  \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)\(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))

\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)

\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8

\(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8

\(\dfrac{1}{2}\) + 4

\(\dfrac{9}{2}\) 

 

21 tháng 9

a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)

  = (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8

= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8

= 1 + 1 + 8

= 2 + 8

= 10

21 tháng 9

b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)

\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)

\(\dfrac{1}{2}\) x 10

= 5

2 tháng 3 2015

a=3

b=2

c=0

a, (-4) . (+125) . (-25) . 6 . (-8)

  =[ (-4) . (-25) ] . [ (+125) . (-8) ] . 6

  =    100          .        (-1000)      . 6

  =              -100 000                  . 6

  =                     -600 000

b,  122 . (-12345) + 12345 . (-78)

   = 12345 . [ (-122) + (-78) ]

   = 12345 .        (-200)

   =      -2 469 000

     

21 tháng 1 2020

A=6^6+6^3+3^3+3^6/-73=2^6.3^6+2^3.3^3.3^3+3^6/-73=2^6.3^6+2^3.3^6+3^6/-73=(2^6+2^3+1).3^6/-73=73.3^6/-73=-(3^6)=...

21 tháng 1 2020

B và C tương tự

21 tháng 9

a; 

c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)

\(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)

\(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)

=  \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)

\(\dfrac{10+10+10+10+5}{10}\)

\(\dfrac{\left(10+10+10+10\right)+5}{10}\)

\(\dfrac{10\times4+5}{10}\)

\(\dfrac{45}{10}\)

\(\dfrac{9}{2}\)