cho tam giác ABC vuôn tại A có AB=16cm,AC=12cm.Kẽ AH vuôn góc vs BC tại H ,Tính AH,BH,CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC vuông tại A, đường cao AH có:
+ AH2 =BH.CH
=>CH=\(\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)
=>BC=BH+CH=9+16=25(cm)
+ AB2=BH.BC
=>AB=\(\sqrt{BH.BC}=\sqrt{9.25}=15\left(cm\right)\)
+AC2=CH.BC
=>AC=\(\sqrt{CH.BC}=\sqrt{16.25}=20\left(cm\right)\)
a, Stam giác ABC=\(\dfrac{AB.AC}{2}=\dfrac{15.20}{2}=150\left(cm^2\right)\)
Bổ sung đề: \(\widehat{B}=30^0\)
a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)
mà cạnh đối diện với \(\widehat{B}\) là cạnh AC
nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)
\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)
hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)
Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)
Hình bạn tự vẽ nha
c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25
Xét tam giác ABC vuông tại A có:
AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)
mà BC=25
=>AB^2+AC^2=25^2=625
Xét tam giác AHB vuông tại H có:
AB^2=AH^2+BH^2 (1)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2 (2)
Cộng từng vế của (1) và (2) ta được :
AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)
=2AH^2+BH^2+HC^2
mà AB^2+AC^2=625 ; BH=9 ; HC=16
=>625=2AH^2+81+256
=>625=2AH^2+337
=>2AH^2=625-337=288
=>AH^2=144
=>AH=12
d)Gọi M là trung điểm của BC => BC=2BM=2CM
Có AH vuông góc BC mà AB<AC
=>HB<HC mà HB+HC=BC
=>HB<1/2 BC
=>HB<BM
Có AH vuông góc BC hay AH vuông góc HM
=>tam giác AHM vuông tại H
=>AH<AM (AM là cạnh huyền)
CM được AH=AD=AE
mà AH<BM
=>BM>AD và BM>AE
=>2BM > AD+AE=DE
mà 2BM=BC
=>BC>DE
=>BH+HC>DE
hay BD+CE>DE (CM được BH=BD và HC=CE)
Vậy.....
\(BC=\sqrt{3^2+4^2}=5\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)
\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)
Áp dụng đl pytago vào tam giác vuông abc, ta có:
\(ab^2+ac^2=bc^2\)
\(6^2+8^2=bc^2\)
\(\Rightarrow bc=\sqrt{6^2+8^2}=10cm\)
ah=\(\dfrac{1}{2}bc=\dfrac{1}{2}10=5cm\)
1 diện tích tam giác là: (16x12):2= 96
2
2) Có ΔABC vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : SΔABC = SΔABH + SΔACH
=> BH.AH/2+HC.AH/2=SΔABC
=> BH^2.AH+HC^2.AH/2=SΔABC
=> AH.(BH^2+HC)2=SΔABC
=> AH.BC^2/2 = 96
=> AH = 96 . 2/BC = 96 . 2/20 = 9.6 (cm)
3) Có ΔABH vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ
AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM
TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ
HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM
VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM
=>CHU VI TAM GIÁC ABC LÀ
AB+AC+BC=13+21+20=54 CM
Ta có tam giác ABC vuông tại A
Áp dụng định lí PITAGO:
=> BC2 = 162 + 122
=> BC2 = 400
=> BC = 20 cm
Bạn sẽ chứng minh đc tam giác ABC và tam giác ABH đồng dạng (nếu bạn học lớp 8)
=> \(\frac{AH}{AC}=\frac{AB}{BC}\) hay \(\frac{AH}{16}=\frac{12}{20}\)
=> \(AH=\frac{12\cdot16}{20}\) = 9,6 cm
Ta có tam giác ABH vuông tại H
Áp dụng định lí PITAGO:
=> AB2 = AH2 + BH2
=> BH2 = AB2 - AH2
=> BH2 = 162 - 9,62
=> BH2 = 51,84
=> BH = 7,2 cm
Ta có tam giác ACH vuông tại H
Áp dụng định lí PITAGO:
=> AC2 = AH2 + HC2
=> HC2 = AC2 - AH2
=> HC2 = 122 - 9,62
=> HC2 = 51,84
=> HC = 7,2 cm
Vậy AH = 9,6 cm
BH = 7,2 cm
CH (HC) = 7,2 cm