Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung đề: \(\widehat{B}=30^0\)
a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)
mà cạnh đối diện với \(\widehat{B}\) là cạnh AC
nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)
\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)
hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)
Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)
Hình bạn tự vẽ nha
c)Có BH=9 ; HC=16 mà BH+HC=BC => BC=25
Xét tam giác ABC vuông tại A có:
AB^2 + AC^2 = BC^2 (đ/l Py-ta-go)
mà BC=25
=>AB^2+AC^2=25^2=625
Xét tam giác AHB vuông tại H có:
AB^2=AH^2+BH^2 (1)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2 (2)
Cộng từng vế của (1) và (2) ta được :
AB^2+AC^2=(AH^2+BH^2)+(AH^2+HC^2)
=2AH^2+BH^2+HC^2
mà AB^2+AC^2=625 ; BH=9 ; HC=16
=>625=2AH^2+81+256
=>625=2AH^2+337
=>2AH^2=625-337=288
=>AH^2=144
=>AH=12
d)Gọi M là trung điểm của BC => BC=2BM=2CM
Có AH vuông góc BC mà AB<AC
=>HB<HC mà HB+HC=BC
=>HB<1/2 BC
=>HB<BM
Có AH vuông góc BC hay AH vuông góc HM
=>tam giác AHM vuông tại H
=>AH<AM (AM là cạnh huyền)
CM được AH=AD=AE
mà AH<BM
=>BM>AD và BM>AE
=>2BM > AD+AE=DE
mà 2BM=BC
=>BC>DE
=>BH+HC>DE
hay BD+CE>DE (CM được BH=BD và HC=CE)
Vậy.....
1 diện tích tam giác là: (16x12):2= 96
2
2) Có ΔABC vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : SΔABC = SΔABH + SΔACH
=> BH.AH/2+HC.AH/2=SΔABC
=> BH^2.AH+HC^2.AH/2=SΔABC
=> AH.(BH^2+HC)2=SΔABC
=> AH.BC^2/2 = 96
=> AH = 96 . 2/BC = 96 . 2/20 = 9.6 (cm)
3) Có ΔABH vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
tam giác AHB vuông tại H ,THEO ĐỊNH LÝ PYTA GO TA CÓ
AB^2=AH^2+BH^2=>AB^2=169=>AB=13 CM
TAM GIÁC AHC VUÔNG TẠI H,THEO ĐỊNH LÝ PYTA GO TA CÓ
HC^2+AH^2=AC^2=>HC^2=AC^2-AH^2=>HC^2=256=>HC=16CM
VÌ H NẰM GIỮA BC => BC=BH+HC=21 CM
=>CHU VI TAM GIÁC ABC LÀ
AB+AC+BC=13+21+20=54 CM
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
2)BC2=AB2+AC2=>162+122=400=>\(\sqrt{400}\)=20cm
a.h=b.c=>h=(b.c):a =>h=(12.16):20=9,6 cm
1)Diện tích tam giác ABC là:\(\frac{1}{2}\).12.16=96cm
Lời giải:
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)
$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)
Tam giác ABC vuông tại A nên áp dụng định lí Pytago ta có:
AB2 + AC2 = BC2
<=> 122+92 = BC2
<=> BC2 =225
Mà BC >0 => BC =15 cm
Ta có : SABC = 1/2.AB.AC=1/2.AH.BC
<=> AB.AC=AH.BC
<=> 12.9=AH.15
<=> AH=7,2 ( cm)
Tam giác ABH vuông tại H ( AH vuông góc BC ) nên áp dụng định lí Pytago ta có
AB2=BH2+AH2
<=> 122=BH2+7,22
<=>BH2= 92,16
Mà BH >0 => BH=9,6(cm)
Ta có BH+CH=BC ( H nằm giữa B và C)
<=> 9,6 +CH = 15
<=> CH = 5,4 ( cm)
Vậy AH= 7,2 ( cm)
BH=9,6 (cm)
CH= 5,4 (cm)
Tk mình nhé!!
~~ Học tốt~~
Ta có tam giác ABC vuông tại A
Áp dụng định lí PITAGO:
=> BC2 = 162 + 122
=> BC2 = 400
=> BC = 20 cm
Bạn sẽ chứng minh đc tam giác ABC và tam giác ABH đồng dạng (nếu bạn học lớp 8)
=> \(\frac{AH}{AC}=\frac{AB}{BC}\) hay \(\frac{AH}{16}=\frac{12}{20}\)
=> \(AH=\frac{12\cdot16}{20}\) = 9,6 cm
Ta có tam giác ABH vuông tại H
Áp dụng định lí PITAGO:
=> AB2 = AH2 + BH2
=> BH2 = AB2 - AH2
=> BH2 = 162 - 9,62
=> BH2 = 51,84
=> BH = 7,2 cm
Ta có tam giác ACH vuông tại H
Áp dụng định lí PITAGO:
=> AC2 = AH2 + HC2
=> HC2 = AC2 - AH2
=> HC2 = 122 - 9,62
=> HC2 = 51,84
=> HC = 7,2 cm
Vậy AH = 9,6 cm
BH = 7,2 cm
CH (HC) = 7,2 cm