Giúp mk với mọi người ơi !
Tìm số n thuộc N*,sao cho n^3 - n^2 + n - 1 là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn
$\Rightarrow n^2-3n+1$ lẻ. Do đó:
$25\equiv -1\pmod{13}$
$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$
$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$
Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương
Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$
$\Leftrightarrow n^2-3n+1=1$
$\Leftrightarrow n(n-3)=0$
$\Leftrightarrow n=3$ (do $n$ nguyên dương)
Đặt d = ( n + 1; 7n + 4 )
Ta có: \(\hept{\begin{cases}7n+4⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮d\\7n+7=7\left(n+1\right)⋮d\end{cases}}\Rightarrow\left(7n+7\right)-\left(7n+4\right)⋮d\)
=> \(3⋮d\Rightarrow d\in\left\{1;3\right\}\)=> d có thể bằng 3 hoặc bằng 1
Với d = 3 ta có: \(\hept{\begin{cases}7n+4⋮3\\n+1⋮3\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮3\\6n+6=6\left(n+1\right)⋮3\end{cases}}\Rightarrow\left(7n+4\right)-\left(6n+6\right)⋮3\)
=> \(n-2⋮3\)
=> Tồn tại số tự nhiên k sao cho : n - 2 = 3k => n = 3k + 2
=> n khác 3k + 2 thì d khác 3
hay n khác 3k + 2 thì d = 1
=> n khác 3k + 2 thì n + 1 và 7n + 4 là hai số nguyên tố cùng nhau.
1+ 2 + 3 + ... + n = 820
Xét dãy số: 1; 2; 3;...;n Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n -1) : 1 + 1 = n
Tổng của dãy số trên là: (n + 1).n : 2
Ta có: (n + 1).n : 2 = 820
(n + 1).n = 1640
(n + 1).n = 40.41
n = 40
Vậy n = 40
Đặt \(A=n^3-n^2+n-1\)
Ta có:
\(A=n^3-n^2+n-1\)
\(\Rightarrow A=n^2\left(n-1\right)+\left(n-1\right)\)
\(\Rightarrow A=\left(n-1\right)\left(n^2+1\right)\)
Vì \(A\) là số nguyên tố nên \(A\) có 2 ước:
\(n-1=1;n^2+1\) là số nguyên tố
\(\Rightarrow n=2;n^2+1=5\) là số nguyên tố (chọn)
\(n^2+1=1;n-1\) là số nguyên tố
\(\Rightarrow n=0;n-1=-1\) không là số nguyên tố (loại)
Vậy \(n=2\)