K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ta có a+b=1; a2+b2=5 \(\Rightarrow\)\(a^2+2ab+b^2-2ab\Leftrightarrow\)\(\left(a+b\right)^2-2ab\)=5 \(\Leftrightarrow\)1-2ab=5\(\Rightarrow\)ab=-2(*)

P=\(\frac{4a^2+b^2}{ab}-\frac{3a-2b}{b}=\frac{4a^2+b^2-3a^2+2ab}{ab}=\frac{a^2+2ab+b^2}{ab}=\frac{\left(a+b\right)^2}{ab}\)

thay a+b=1 và ab=-2 vào P ta đc \(\frac{-1}{2}\)

1 tháng 1 2017

Ta có:

a + b = 1

<=> a2 + 2ab + b2 = 1

<=> 5 + 2ab = 1

<=> ab = - 2

\(\Leftrightarrow a=\frac{-2}{b}\)

Thế cái này vô P là ra ah. B làm tiếp nhé

16 tháng 11 2021

làm ơn trả lời hộ mk với ah mai mk phải nộp bài r

gianroi

10 tháng 3 2021

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

10 tháng 3 2021

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

17 tháng 12 2016

P=3a-2b\2a+5 + 3b-a\b-5

=2a+a-2b\2a-5 + -a+2b+b\b-5

=2a+(a-2b)\2a-5 + -(a-2b)+b

=2a+5\2a-5 + -5+b\b-5

=-(2a-5)\(2a-5) + (b-5)\(b-5)

=-1+1=0

17 tháng 12 2016

Bài của mình đây , ko biết có đúng ko

10 tháng 2 2017

=4 nhé

10 tháng 2 2017

nó bảo sai bạn ạ

2 tháng 5 2017

dúng đó

15 tháng 2 2017

Theo bài ra , ta có : 

\(3a+2b-c-d=1\)

\(2a+2b-c-2d=2\)

\(4a-2b-3c+d=3\)

\(8a+b-6c+d=4\)(1)

Cộng từng vế của 3 biểu thức đầu lại ta đk \(3a+2b-c-d+2a+2b-c-2d+4a-2b-3c+d=1+2+3\)

\(\Leftrightarrow9a+2b-5c+2d=6\)(2)

Trừ phương trình (2) cho phương trình (1) theo từng vế ta đk 

\(9a+2b-5c+2d-8a-b+6c-d=6-4=2\)

\(\Leftrightarrow a+b+c+d=2\)

Vậy \(a+b+c+d=2\)

Chúc bạn học tốt =)) 

NV
7 tháng 7 2021

\(a;b>0\Rightarrow3a+2b+1>1\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến

Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)

\(\Rightarrow18a^2+1=3a+6a+1\)

\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)