giải phương trình
\(\frac{36}{x+6}\) + \(\frac{36}{x-6}\) = \(\frac{9}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{36}{x+6}+\frac{36}{x-6}=\) \(4,5\)\(\left(ĐKCĐ:x\ne\pm6\right)\)
\(\Leftrightarrow\frac{36\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}+\frac{36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}\)\(=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{36x-216}{\left(x-6\right)\left(x+6\right)}+\frac{36x+216}{\left(x-6\right)\left(x+6\right)}\)\(=\frac{4,5x^2-162}{\left(x-6\right)\left(x+6\right)}\)
\(\Rightarrow36x-216+36x+216=4,5x^2-162\)
( đến đây giải phương trình ra rồi đối chiếu đkxđ là xong )
\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(DKXD:\hept{\begin{cases}x+6\ne0\\x-6\ne0\\\left(x+6\right)\left(x-6\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-6\\x\ne6\end{cases}}\)
\(\frac{72x}{\left(x+6\right)\left(x-6\right)}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(4,5x^2+72x-162=0\)
\(4,5x^2-9x+81x-162=0\)
\(4,5\left(x-2\right)+81\left(x-2\right)=0\)
\(\left(x-2\right)\left(4,5x-81\right)=0\)
\(\left(x-2\right)4,5\left(x-18\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-18=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=18\end{cases}}\)
2) đặt \(x^2+x+1=t\left(t>0\right)\) ==> \(x^2+x+2=t+1\)
nên pt trên trở thành
\(\left(\frac{1}{t}\right)^2+\left(\frac{1}{t+1}\right)^2=\frac{13}{36}\)
<=> \(\frac{1}{t^2}+\frac{1}{t^2+2t+1}=\frac{13}{36}\)
<=> \(13t^4+26t^3-59t^2-72t-36=0\)
<=> \(13t^4-26t^3+52t^3-104t^2+45t^2-90t+18t-36=0\)
<=> \(13t^3\left(t-2\right)+52t^2\left(t-2\right)+45t\left(t-2\right)+18\left(t-2\right)=0\)
<=>\(\left(t-2\right)\left(13t^3+52t^2+45t+18\right)=0\)
<=> \(\left(t-2\right)\left(t+3\right)\left(13t^2+13t+6\right)=0\)
<=> \(\orbr{\begin{cases}t=2\left(tmdk\right)\\t=-3\left(ktmdk\right)\end{cases}}\)
đến đây bạn thay vào làm nốt nhá
1.
Đặt \(a=\frac{x\left(5-x\right)}{x+1};b=x+\frac{5-x}{x+1}\)
Ta cần giải pt : \(a.b=6\)(1)
Ta có: \(a+b=\frac{x\left(5-x\right)}{x+1}+x+\frac{5-x}{x+1}=\frac{5x-x^2+x^2+x+5-x}{x+1}=5\)
\(\Rightarrow a=5-b\)
Thế \(a=5-b\)vào (1)
\(\Rightarrow\left(5-b\right)b=6\)
\(\Leftrightarrow b^2-5b+6=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=2\\b=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{5-x}{x+1}=2\\x+\frac{5-x}{x+1}=3\end{cases}}}\)
Giải 2 pt trên, ta có nghiệm : \(x=1\)
\(72\left(x-6\right)+72\left(x+6\right)=9\left(x^2-36\right)\)
\(144x=9x^2-324\)=0
\(9x^2-144x-324=0\)
\(9\left(x^2-16x-36\right)=0\)
\(9\left(x^2-18x+2x-36\right)=0\)
\(9\left(x-18\right)\left(x+2\right)=0\)
Đến đây bạn tự làm nhé
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
\(\Leftrightarrow\frac{\left(x+a\right)\left(3a^2x^2+a^2+8ax+x^2+3\right)\left(3a^6x^6+27a^6x^4+33a^6x2+a^6+72a^5x^5+24a^5x^3+72a^{5x}+27a^4x^6+459a^4x^4+441a^4x^2+33a^4+240a^3x^5+800a^3x^3+240a^3x+33a^2x^6+441a^2x^4+459x^2a^2+27a^2+75ax^5+240ax^3+72ax+x^6+33x^4+27x^2+3\right)}{\left(a^2+3\right)\left(a^6+33a^4+27a^{2+3}\right)\left(x^{2+3}\right)\left(x^6+33x^4+27x^2+3\right)}=0\)
mấy nhân tử sau ko cần chú ý đâu :)) chỉ cần chú ý đến x+a=0 <=>x=-a thôi :))
bài này đúng 100% nhé chỉ sợ gõ sai thôi, ko tin có thể dùng máy tính kiểm tra
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
\(\frac{36\left(x-6\right)2}{\left(x^2-36\right)2}+\frac{36\left(x+6\right).2}{\left(x^2-36\right)2}=\frac{9\left(x^2-36\right)}{2\left(x^2-36\right)}\)
=>\(\frac{-432+72x}{\left(x^2-36\right)2}+\frac{432+72x}{\left(x^2-36\right)2}=\frac{-324+9x^2}{2\left(x^2-36\right)}\)
=>\(-432+72x+432+72x=-324+9x^2\)
=>\(-9x^2+144x+324=0=>\left(x-18\right)\left(x+2\right)=0\)
=>\(\left\{\begin{matrix}x-18=0\\x+2=0\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=18\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S={-2;18}