\(a,b,c,d>0\). Chứng minh \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
Ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{c+d+a}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\)\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}>\frac{a+b+c+d}{a+b+c+d}=1\) ( cộng theo vế 4 đẳng thức trên )
\(\Rightarrow\)\(M>1\) \(\left(1\right)\)
Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,m\inℕ^∗\right)\) )
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d}\)
\(\frac{d}{c+d+a}< \frac{d+b}{a+b+c+d}\)
\(\Rightarrow\)\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{c+d+a}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\) ( cộng theo vế 4 đẳng thức trên )
\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)
Từ (1) và (2) suy ra đpcm : \(1< M< 2\)
Vậy \(1< M< 2\)
Chúc bạn học tốt ~
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)(1)
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(2)
và \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(3)
Từ (1), (2) và (3) suy ra \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right)\)
Ta có \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\left(a+c\right).\left(b-d\right)=\left(b+d\right).\left(a-c\right)\)
\(\Rightarrow\left(ab+bc\right)-\left(ad+cd\right)=\left(ab+ad\right)-\left(bc+dc\right)\)
\(\Rightarrow ab+bc-ad-cd=ab+ad-bc-dc\)
\(\Rightarrow bc-ad=ad-bc\)
\(\Rightarrow bc+bc=ad+ad\)
\(\Rightarrow2bc=2ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(theo đề bài cho)
Vậy bài toán dc c/m
Có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Nên \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
1. a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
c,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{ab}{cd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (3)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
@@ Học tốt
Chiyuki Fujito
Ta có: \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(1\right)\)
Mặt khác: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)
Tương tự: \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{b+d+a}< \frac{d+c}{a+b+c+d}\left(6\right)\)
Cộng vế với vế (3);(4);(5);(6) ta có:
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(đpcm\right)\)
Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm
nguồn:soyeon_Tiểubàng giải
\(1< A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
(*) C/m A>2
Trước hết ta có với x>y>0 và m>0
luôn có \(\frac{y}{x}< \frac{y+p}{x+p}\) (1)
c/m: \(\Leftrightarrow xy+ym< xy+xm\Leftrightarrow m\left(x-y\right)>0\) luôn đúng => (1) được c/m.
áp (1) vào từng số hạng của A ta có
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{d+a+b+c}\\ \)
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{d+a+b+c}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)=>(*) dpc/m
(**)C/m A>1: ta có với x>0 và m>0=> \(x>\frac{x}{x+m}\\ \) (2)
Áp (2) vào tầng số hạng của A ta có
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}\\ \)
\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=\frac{a+b+c+d}{a+b+c+d}=1\) => (**)dpcm
Từ (*) và (**) =>\(1< A< 2\)=> dpcm
dấu (*) đánh lộn nhé c/m A<2