Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)
Áp dụng tính chất dãy tỉ số bằng nhua ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Mà \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)(đpcm)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
đpcm
Có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Nên \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
1. a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
c,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{ab}{cd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (3)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
@@ Học tốt
Chiyuki Fujito
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Thay vào đẳng thức ta có :
\(\frac{bk-b}{bk}=\frac{dk-d}{dk}\)
\(\frac{b\left(k-1\right)}{bk}=\frac{d\left(k-1\right)}{dk}\)
\(\frac{k-1}{k}=\frac{k-1}{k}\left(đpcm\right)\)
Vì \(a,b,c,d\ne0\) \(\Rightarrow\frac{a}{b}\) \(=\frac{c}{d}\) \(=k\left(k\ne0\right)\)
\(\Rightarrow a=kb,c=kd\)
\(\Rightarrow\frac{a-b}{a}\) \(=\frac{kb-b}{kb}\) \(=\frac{b\left(k-1\right)}{kb}\) \(=\frac{k-1}{k}\) \(\left(1\right)\)
\(\frac{c-d}{c}\) \(=\frac{kd-d}{kd}\) \(=\frac{d\left(k-1\right)}{kd}\) \(=\frac{k-1}{k}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{a-b}{a}\) \(=\frac{c-d}{c}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)=>\(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)
mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) ta suy ra ĐPCM
\(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chát dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy: \(\frac{a}{b}=\frac{a+c}{b+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(đpcm\right)\)
#
aaps dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{c+d+b}\)
\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=>đpcm
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)(1)
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(2)
và \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(3)
Từ (1), (2) và (3) suy ra \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right)\)
Ta có \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\left(a+c\right).\left(b-d\right)=\left(b+d\right).\left(a-c\right)\)
\(\Rightarrow\left(ab+bc\right)-\left(ad+cd\right)=\left(ab+ad\right)-\left(bc+dc\right)\)
\(\Rightarrow ab+bc-ad-cd=ab+ad-bc-dc\)
\(\Rightarrow bc-ad=ad-bc\)
\(\Rightarrow bc+bc=ad+ad\)
\(\Rightarrow2bc=2ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(theo đề bài cho)
Vậy bài toán dc c/m