Tìm số dư 370 +570 khi chia cho 7 ( àm theo cách đồng dư thức ( mod ..))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
nhung ma cai do la VD thoi
con tren kia moi la bai mk can moi ng giup mk mun moi ng giai giong nhu z
Cho A=2015^2016a) Tìm số dư của A khi chia cho 7 b) Tìm 2 chữ số tận cùng của A( Làm đồng dư thức )
tíc xong mình giải cho
Ta có: \(5^{2018}=\left(5^4\right)^{504}.5^2\)
\(5^4\equiv625\left(mod1000\right)\)
\(\Rightarrow\left(5^4\right)^{2018}\equiv625^{2018}\left(mod1000\right)\)
\(\Rightarrow\left(5^4\right)^{2018}\equiv625\left(mod1000\right)\)(vì \(625^{2018}\)có tận cùng là 0625)
\(\Rightarrow\left(5^4\right)^{2018}.5^2\equiv625.5^2\left(mod1000\right)\)
\(\Rightarrow5^{2018}\equiv5625\left(mod1000\right)\)
Vậy: \(5^{2018}\)có tận cùng là 5625
Ta có:370=(37).10=2110 chia hết cho 7
570=(57).10=3510 chia hết cho 7
=>370+570 chia hết cho 7
đố ai giải dc dạng này rất khó