K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 8 2021

\(3=a^2+ab+b^2=\left(a+b\right)^2-ab\Leftrightarrow ab=\left(a+b\right)^2-3\ge-3\)

Dấu \(=\)khi \(\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\).

\(3=a^2+ab+b^2=\left(a-b\right)^2+3ab\Leftrightarrow ab=\frac{3-\left(a-b\right)^2}{3}\le1\)

Dấu \(=\)khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\).

4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

20 tháng 4 2023

Thiếu điều kiện a,b,c rồi bạn.

câu này đưa về tam thức bậc 2 là được

1 tháng 9 2017

làm denta cũng đc

24 tháng 4 2021

a)Ta có:

 \(a+b+ab=a^2+b^2\).

\(\Leftrightarrow a^2-ab+b^2=a+b\).

Ta có:

\(P=a^3+b^3+2020\).

\(P=\left(a+b\right)\left(a^2-ab+b^2\right)+2020\).

\(P=\left(a+b\right)\left(a+b\right)+2020\)(vì \(a^2-ab+b^2=a+b\)).

\(P=\left(a+b\right)^2+2020\).

Ta có:

\(\left(a+b\right)^2\ge0\forall a;b\).

\(\Rightarrow\left(a+b\right)^2+2020\ge2020\forall a;b\).

\(\Rightarrow P\ge2020\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a+b+ab=a^2+b^2\\\left(a+b\right)^2=0\end{cases}}\Leftrightarrow a=b=0\).

Vậy \(maxP=2020\Leftrightarrow a=b=0\).

24 tháng 4 2021

b)\(A=\frac{27-12x}{x^2+9}\).

Vì \(x^2+9>0\forall x\)nên \(A\)luôn được xác định.

 \(A=\frac{27-12x}{x^2+9}=\frac{4x^2-4x^2+27-12x}{x^2+9}=\frac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)

\(A=\frac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}=4-\frac{\left(2x+3\right)^2}{x^2+9}\).

Ta có:

\(\left(2x+3\right)^2\ge0\forall x\).

\(\Rightarrow\frac{\left(2x+3\right)^2}{x^2+9}\ge0\forall x\)(vì \(x^2+9>0\forall x\)).

\(\Rightarrow-\frac{\left(2x+3\right)^2}{x^2+9}\le0\forall x\).

\(\Rightarrow4-\frac{\left(2x+3\right)^2}{x^2+9}\le4\forall x\).

\(\Rightarrow A\le4\).

Dấu bằng xảy ra.

\(\Leftrightarrow\left(2x+3\right)^2=0\Leftrightarrow x=-\frac{3}{2}\).

Vậy \(maxA=4\Leftrightarrow x=-\frac{3}{2}\).