Bài 1 : Tìm x
a) \(\left(x+2\right)^2-5=4\)
b) \(\left|1-x\right|\)\(+2=-1\)
c) \(x^2=4x\)
Help me !!!!!!!!!!!!!!!!!!!!!!!!!! Mai mk phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2x+3\\x+\frac{1}{2}=-\left(2x+3\right)\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x-x=\frac{1}{2}-3\\x+\frac{1}{2}=-2x-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x+2x=-3-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\3x=\frac{-7}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x=\frac{-7}{6}\end{array}\right.\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{-7}{6}\right\}\)
\(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(Ta\) \(có\): \(x+\frac{1}{2}=2x+3\)
\(x+\frac{1}{2}=x+x+3\\\)
\(x+\frac{1}{2}=x+\left(x+3\right)\)
\(\Rightarrow\frac{1}{2}=x+3\)
\(\Rightarrow x=\frac{1}{2}-3\)
\(\Rightarrow x=-\frac{5}{2}\)
Vậy \(x=-\frac{5}{2}\)
b, \(\left|x+\frac{1}{5}\right|+\left|x+\frac{2}{5}\right|+\left|x+1\frac{2}{5}\right|=4x\)
\(Ta\) \(có\)
\(x+\frac{1}{5}+x+\frac{2}{5}+x+1\frac{2}{5}\)\(=4x\)
\(3x+\left(\frac{1}{5}+\frac{2}{5}+1\frac{2}{5}\right)=4x\)
\(3x+2=4x\)
\(3x+2=3x+x\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
a) => 4x + 2/3 = 0 hoặc 2/3x - 1 =0
4x= -2/3 hoặc 2/3x= 1
x = -2/3 . 1/4 hoặc x = 1.3/2
x = -1/6 hoặc x = 3/2
b) x+2 / x -1 = 5/2
=> 2(x+2) = 5(x-1)
2x + 4 = 5x - 5
5x - 2x= 4+5
3x = 9
=> x= 3
a) (4x+\(\frac{2}{3}\)) . ( \(\frac{2}{3}\)x-1)=0
\(\Rightarrow\)\(\orbr{\begin{cases}4x+\frac{2}{3}=0\\\frac{2}{3}x-1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\\x=\end{cases}}\)........
Tới đây bn tự giải nha
Có: \(\frac{1}{x\left(x+1\right)}\)= \(\frac{1}{x}-\frac{1}{x+1}\)
Mà \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2017}\)
=> \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2017}\)
=> \(-\frac{1}{x+1}\)= \(\frac{1}{x}+\frac{1}{2017}-\frac{1}{x}\)
=> \(-\frac{1}{x+1}=\frac{1}{2017}\)
=> \(-1\cdot2017=\left(x+1\right)\cdot1\)
=> \(-2017=x+1\)
=> \(x=-2017-1\)
=> \(x=-2018\)
Vậy \(x=-2018\)
a) 2|x| + 34 = 50
-> 2|x| = 16
-> x = 8 hoặc x = -8.
b) 3|x|−21=36
-> 3|x| = 57
-> x = 19 hoặc x = -19.
c) 19−5|x|+3=19
-> 19 - 5|x| = 16
-> 3 = 5|x|
-> x = 0,6 hoặc x = -0,6.
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
a, \(\left(x+2\right)^2-5=4\Rightarrow\left(x+2\right)^2=5+4\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\Rightarrow x+2=3\Rightarrow x=3-2=1\)
Vậy x = 1
b, \(\left|1-x\right|+2=-1\Rightarrow\left|1-x\right|=-1+\left(-2\right)\)
\(\Rightarrow\left|1-x\right|=-3\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
c, \(x^2=4x\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}x=0\\x=0+4=4\end{matrix}\right.\)
Vậy x = 0 hoặc x = 4
a) \(\left(x+2\right)^2-5=4\)
\(\Rightarrow\left(x+2\right)^2=9\)
\(\Rightarrow x+2=3\) hoặc x + 2 = -3
+) \(x+2=3\Rightarrow x=1\)
+) \(x+2=-3\Rightarrow x=-5\)
Vậy \(x\in\left\{1;-5\right\}\)
b) \(\left|1-x\right|+2=-1\)
\(\Rightarrow\left|1-x\right|=-3\)
Mà \(\left|1-x\right|\ge0\)
\(\Rightarrow x\) không có giá trị thỏa mãn
Vậy x không có giá trị thỏa mãn
c) \(x^2=4x\)
\(\Rightarrow x^2-4x=4x-4x\)
\(\Rightarrow x^2-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{0;4\right\}\)