Cho số \(\overline{abcabc}\)\(⋮\)27. CMR \(\overline{bcabca}\) \(⋮\)27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)
\(\Rightarrow999a+a+\overline{bc0}⋮27\)
\(\Rightarrow27.37a+\overline{bca}⋮27\)
do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)
Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.
=> 1000a + bc0 chia hết cho 27.
=> 999a + a + bc0 chia hết cho 27.
=> 27.37.a + bac chia hết cho 27.
Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
\(\overline{abcabc}=\overline{abc}\cdot1000+\overline{abc}\)
\(=\overline{abc}\cdot1001\)
\(1001⋮11\)
\(\Rightarrow\overline{abc}\cdot1001⋮11\) (đpcm)
abcabc = abc . 1000 + abc = abc . (1000 + 1)
=> abc . 1001 = abc . 99 . 11
Vì 11 chia hết cho 11 nên abc . 99 . 11 chia hết cho 11
=> abcabc lúc nào cx chia hết cho 11 (đpcm)
Ta có: \(\overline{abcabc}+22\)
=\(\overline{abc}.1001+22\)
=\(\overline{abc}.7.11.13+2.11\)
=11.(\(\overline{abc}.7.13+2\))
Mà \(\overline{abcabc}+22>11\)
Nên \(\overline{abcabc}+22\)là hợp số
Vậy \(\overline{abcabc}+22\)là hợp số
327 hay 357 hay 387 đều chia hết cho 3.
270 hay 279 đều chia hết cho 9.
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(=1001\cdot\overline{abc}\)
\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13
Đêm rồi không biết c/m chia hết cho 3 :)
b) \(\overline{aaa}=111\cdot a\)chia hết cho a
c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)
sửa đề
\(a,\overline{abcabc}⋮7;11;13\)
=\(\overline{abc}.1000+\overline{abc}\)
=\(\overline{abc}\left(1000+1\right)\)
= \(\overline{abc}.1001\)
= \(\overline{abc}.7..11.13\)
=> \(\overline{abcabc}⋮7;11;13\)
\(b,\overline{aaa}:a=111\)
\(=>\overline{aaa}⋮a\)
\(c,\overline{abc}⋮\overline{abc}\)
Do \(\overline{abc}=\overline{abc}\)
=> \(\overline{abc}⋮\overline{abc}\)
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)