K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

\(\dfrac{1}{a-2b}.\sqrt{b^2\left(a^2-4ab+4b^2\right)}=\dfrac{1}{a-2b}.b.\left|a-2b\right|=\dfrac{1}{a-2b}.b.\left(2b-a\right)=-b\)

\(\dfrac{1}{a-2b}\cdot\sqrt{b^2\cdot\left(a^2-4ab+b^2\right)}\)

\(=\dfrac{1\cdot\left(a-2b\right)}{a-2b}\cdot b\)

=b

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:

$(a+2b-c)(a+2b+c)-(a^2+4b^2-c^2)=(a+2b)^2-c^2-a^2-4b^2+c^2$

$=(a+2b)^2-a^2-4b^2$

$=a^2+4ab+4b^2-a^2-4b^2=4ab$

4 tháng 7 2021

\(=\left[\left(a+2b\right)^2-c^2\right]-\left(a^2+4b^2-c^2\right)\)

\(=a^2+4ab+4b^2-c^2-a^2-4b^2+c^2\)

\(=4ab\)

a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)

\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)

\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)

Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)

3 tháng 6 2019

Ta có B = (3a+b)(a - 2b)

25 tháng 1 2021

2: Điểm rơi... đẹp!

Áp dụng bất đẳng thức AM - GM:

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).

\(\Rightarrow a^2+b^2+c^2\ge14\).

Đẳng thức xảy ra khi a = 1; b = 2; c = 3.

25 tháng 1 2021

1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\)

Đẳng thức xảy ra khi x = 6 hoặc x = 2

\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).

Đẳng thức xảy ra khi x = 4.

 

30 tháng 10 2019

Ta có  a 2 + 4 b 2 = 12 a b ⇔ a + 2 b 2 = 16 a b

Suy ra 

2 log 3 a + 2 b = log 3 2 4 + log 3 a + log 3 b ⇔ log 3 a + 2 b = 2 log 3 2 + 1 2 log 3 a + log 3 b

 Do đó cả hai mệnh đề đều sai

Đáp án C

12 tháng 6 2018

a, \(a^2+4ab+3b^2-2b-1=\left(a^2+4ab+4b^2\right)-\left(b^2+2b+1\right)=\left(a+2b\right)^2-\left(b+1\right)^2\)

                                                             \(=\left(a+2b-b-1\right)\left(a+2b+b+1\right)=\left(a+b-1\right)\left(a+3b+1\right)\)

b,\(a^2-2ab-2b-1=\left(a^2-2ab+b^2\right)-\left(b^2+2b+1\right)\)

                                             \(=\left(a-b\right)^2-\left(b+1\right)^2\)

                                             \(=\left(a-b-b-1\right)\left(a-b+b+1\right)\)   

                                              \(=\left(a-2b-1\right)\left(a+1\right)\)

 TK MINK NHA!

12 tháng 6 2018

a2 - 2ab - 2b - 1 

= a- 2ab + b2 - b2 - 2b - 1

=( a - b )2 - ( b - 1 )2

= ( a - b - b + 1 ) ( a - b + b - 1 )

=  ( a - 2b + 1 ) ( a - 1 )

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)