K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

Ta có: \(\left(1\right)\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\). Dễ dàng suy từ BĐT Cô-si.

a, Ta có:

\(P\ge\frac{9}{a^2+2bc+b^2+2ca+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

b, \(VT\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge\frac{9}{1}+\frac{7}{\frac{1}{3}}=30\)

Chú ý: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

8 tháng 8 2023

Giúp vs mn ơi

8 tháng 8 2023

Cái cuối là c(1/a+1/b) nha mn

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm

24 tháng 8 2020

Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)

\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)

CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)

          \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......

(Dấu = xảy ra (=) a=b=c=1/3

11 tháng 1 2015

cái này bạn dùng bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\)2 lần với từng phân thức. rồi cộng vế theo vế là xong

 

3 tháng 9 2021

đề??

3 tháng 9 2021

ảnh bị lỗi

11 tháng 2 2016

Cho a,b,c > 0 thoả mãn a+b+c=1. Chứng minh >>>>> http://i.imgur.com/B7n0Igp.png????????????

13 tháng 1 2018

Eo : \(ab.bc.ca\le0\Leftrightarrow\left(abc\right)^2\le0\)

Cái đề bài chẳng liên quan gì đến cái cm

25 tháng 5 2021

Áp dụng BĐT cosi:

\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)

Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)

Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)