Ad ơi đăng câu hỏi trắc nghiệm bài 4,5,6,7 nha ad. Mai e thi rồi :( . Cảm ơn ad nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không vẽ hình nhé
a)Ta có: BC=\(4\sqrt{2}\)
Vậy BC=\(4\sqrt{2}\)
b)Xét hai tam giác vuông ADB và ADC có:
AB=AC( giả thiết)
\(\widehat{ABD}=\widehat{ACD}\)(giả thiết)
Do đó ADB=ADC( cạnh huyền - góc nhọn)
Suy ra DB=DC( hai cạnh tương ứng)
Mà \(D\in BC\)( giả thiết)
\(\Rightarrow\)D là trung điểm của BC
Vậy D là trung điểm của BC
c)Ta có ADB=ADC( cạnh huyền - góc nhọn)( chứng minh trên)
Suy ra \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)
Xét tam giác AED có:
\(\widehat{CAD}=45^0\)( chứng minh trên)
\(\widehat{AED}=90^0\left(DE⊥AC\right)\)
Do đó tam giác AED vuông cân tại E
Vậy tam giác AED vuông cân tại E
d) Vì D là trung điểm của BC
Suy ra BD=DC=\(\frac{4\sqrt{2}}{2}=2\sqrt{2}\)(cm)
Áp dung định lí Pi-ta-go vào tam giác ADC vuông tại D có
\(AD^2+DC^2=AC^2\)
hay \(AD^2=4^2-\left(2\sqrt{2}\right)^2\)
hay \(AD^2=16-8=8\)
\(\Rightarrow AD=\sqrt{8}\)(cm)
Vậy \(AD=\sqrt{8}\left(cm\right)\)
Bài 4:
a: \(4x=3y\)
=>\(\dfrac{x}{3}=\dfrac{y}{4}=k\)
=>x=3k; y=4k
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
=>\(\left(3k-4k\right)^2+\left(3k+4k\right)^2=50\)
=>\(\left(-k\right)^2+\left(7k\right)^2=50\)
=>\(50k^2=50\)
=>\(k^2=1\)
TH1: k=1
=>\(x=3\cdot1=3;y=4\cdot1=4\)
TH2: k=-1
=>\(x=3\cdot\left(-1\right)=-3;y=4\cdot\left(-1\right)=-4\)
b: 3x=2y
=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
=>x=2k; y=3k
\(\left(x+y\right)^3-\left(x-y\right)^3=126\)
=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)
=>\(\left(5k\right)^3-\left(-k\right)^3=126\)
=>\(126k^3=126\)
=>\(k^3=1\)
=>k=1
=>\(x=2\cdot1=2;y=3\cdot1=3\)
bài 3:
a: \(\dfrac{x}{2}=\dfrac{y}{5}\)
=>\(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{2}\)
=>\(\dfrac{y}{15}=\dfrac{z}{10}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
mà 2x+3y-4z=34
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x+3y-4z}{2\cdot6+3\cdot15-4\cdot10}=\dfrac{34}{12+45-40}=2\)
=>\(x=2\cdot6=12;y=2\cdot15=30;z=2\cdot10=20\)
b: 2x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{2}\)
=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(3\right)\)
5y=7z
=>\(\dfrac{y}{7}=\dfrac{z}{5}\)
=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(4\right)\)
Từ (3),(4) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
mà 3x-7y+5z=30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{63-98+50}=\dfrac{30}{113-98}=2\)
=>\(x=2\cdot21=42;y=2\cdot14=28;z=2\cdot10=20\)
Bài 2:
a: Xét ΔABD có AD<AB+BD(BĐT tam giác)
b: Xét ΔACD có AD<AC+CD(BĐT tam giác)
ta có: AD<AB+BD
AD<AC+CD
Do đó: AD+AD<AB+BD+AC+CD
=>2AD<AB+AC+BC
c: \(2AD< AB+AC+BC\)
=>\(AD< \dfrac{1}{2}\left(AB+AC+BC\right)\)
=>\(AD< \dfrac{1}{2}\cdot C_{ABC}\)
Bài 11:
a: ΔMDN vuông tại D
=>MN là cạnh huyền
=>MN là cạnh lớn nhất trong ΔMDN
=>MN>MD
b: Ta có: ΔMEN vuông tại E
=>MN là cạnh huyền của ΔMEN
=>MN là cạnh lớn nhất trong ΔMEN
=>MN>NE
mà MN>MD
nên MN+MN>MD+NE
=>2MN>MD+NE
Em tham khảo tại đây nhé.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath