Bài 4 : (1 điểm).
Tìm giá trị nguyên của x để biểu thức A =(x^3-x^2+2)/(x-1) (với x khác 1) có giá trị là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^3-x^2+2}{x-1}=x^2+\frac{2}{x-1}\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\)
mà \(x\inℤ\)nên \(x-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)
\(\Leftrightarrow x\in\left\{-1,0,2,3\right\}\).
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
b: Để A là số nguyên thì \(2x+2⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{-4;-1;-5;1;-7\right\}\)
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
\(\frac{x^3-2x^2+x+2}{x-2}=\frac{x^2\left(x-2\right)+\left(x-2\right)+4}{x-2}=\frac{\left(x-2\right)\left(x^2+1\right)+4}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2+1\right)}{x-2}+\frac{4}{x-2}=x^2+1+\frac{4}{x-2}\)
\(x^2+1+\frac{4}{x-2}\) nguyên khi và chỉ khi 4 chia hết cho x-2
<=>\(x-2\inƯ\left(4\right)=\left\{-4;-1;1;4\right\}\)
<=>\(x\in\left\{-2;1;3;6\right\}\)
Vậy ..................
a/
ĐKXĐ: \(x\ne\left\{-1;0;1\right\}\)
b.
\(A=\dfrac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c.
\(A=2\Rightarrow\dfrac{x+1}{x-1}=2\)
\(\Rightarrow x+1=2x-2\)
\(\Rightarrow x=3\) (thỏa mãn)
d.
\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
\(A\) nguyên \(\Leftrightarrow\dfrac{2}{x-1}\) nguyên
\(\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=0\left(ktm\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy \(x=\left\{2;3\right\}\) thì A nguyên
A = \(\frac{x^3-x^2+2}{x-1}=\frac{x^2\left(x-1\right)}{x-1}+\frac{2}{x-1}\)= \(x^2+\frac{2}{x-1}\)
Vì x2 ϵ Z nên để A có giá trị là một số nguyên thì:
2 ⋮ (x - 1) ⇒ (x - 1) ϵ Ư(2)
⇒ Ư(2) = {1; -1; 2; -2}
Ta có bảng sau:
Vậy x ϵ {2; 0; 3; -1} thì A có giá trị là một số nguyên.