K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

A = \(\frac{x^3-x^2+2}{x-1}=\frac{x^2\left(x-1\right)}{x-1}+\frac{2}{x-1}\)= \(x^2+\frac{2}{x-1}\)

Vì x2 ϵ Z nên để A có giá trị là một số nguyên thì:

2 ⋮ (x - 1) ⇒ (x - 1) ϵ Ư(2)

⇒ Ư(2) = {1; -1; 2; -2}

Ta có bảng sau:

x - 1 1 -1 2 -2
x 2 0 3 -1

Vậy x ϵ {2; 0; 3; -1} thì A có giá trị là một số nguyên.

DD
8 tháng 12 2021

\(A=\frac{x^3-x^2+2}{x-1}=x^2+\frac{2}{x-1}\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\)

mà \(x\inℤ\)nên \(x-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)

\(\Leftrightarrow x\in\left\{-1,0,2,3\right\}\).

14 tháng 9 2021

ta thấy rằng 5 phải chia hết cho a tức là 

a(U)5=1,-1;5,-5

vậy a 1,-1,5,-5 thì x có giá trị nguyên 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

b: Để A là số nguyên thì \(2x+2⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{-4;-1;-5;1;-7\right\}\)

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

7 tháng 12 2016

\(\frac{x^3-2x^2+x+2}{x-2}=\frac{x^2\left(x-2\right)+\left(x-2\right)+4}{x-2}=\frac{\left(x-2\right)\left(x^2+1\right)+4}{x-2}\)

\(=\frac{\left(x-2\right)\left(x^2+1\right)}{x-2}+\frac{4}{x-2}=x^2+1+\frac{4}{x-2}\)

\(x^2+1+\frac{4}{x-2}\) nguyên khi và chỉ khi 4 chia hết cho x-2

<=>\(x-2\inƯ\left(4\right)=\left\{-4;-1;1;4\right\}\)

<=>\(x\in\left\{-2;1;3;6\right\}\)

Vậy ..................

NV
21 tháng 12 2022

a/

ĐKXĐ: \(x\ne\left\{-1;0;1\right\}\)

b.

\(A=\dfrac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

c.

\(A=2\Rightarrow\dfrac{x+1}{x-1}=2\)

\(\Rightarrow x+1=2x-2\)

\(\Rightarrow x=3\) (thỏa mãn)

d.

\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)

\(A\) nguyên \(\Leftrightarrow\dfrac{2}{x-1}\) nguyên

\(\Rightarrow x-1=Ư\left(2\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=0\left(ktm\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Vậy \(x=\left\{2;3\right\}\) thì A nguyên