Căn(2x-1)= X^3 - 2X^2 +2X
. Help me !
.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{3^{2x}+3^{2x+1}+3^{2x+3}}{31}\)
\(\Rightarrow\frac{4^x\left(4^2+4+1\right)}{21}=\frac{3^{2x}\left(1+3+3^3\right)}{31}\)
\(\Rightarrow\frac{4^x.21}{21}=\frac{3^{2x}.31}{31}\)
=> 4x = 32x
=> 4x = (32)x
=> 4x = 9x
=> \(\frac{4^x}{9^x}=1\)(vì lũy thừa của một số khác 0 luôn luôn là 1 số khác 0)
=> \(\left(\frac{4}{9}\right)^x=1\)
=> x = 0
Vậy x = 0
a: \(3+\sqrt{2x-3}=x\)
=>\(\sqrt{2x-3}=x-3\)
=>x>=3 và 2x-3=(x-3)^2
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x>=3 và (x-2)(x-6)=0
=>x>=3 và \(x\in\left\{2;6\right\}\)
=>x=6
b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)
=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)
=>\(-\sqrt{x}-3=-4\)
=>\(-\sqrt{x}=-1\)
=>căn x=1
=>x=1(nhận)
c: \(\sqrt{2x+1}-x+1=0\)
=>\(\sqrt{2x+1}=x-1\)
=>x>=1 và (x-1)^2=2x+1
=>x>=1 và x^2-2x+1=2x+1
=>x>=1 và x^2-4x=0
=>x(x-4)=0 và x>=1
=>x=4
\(\left(2x-\dfrac{3}{4}\right)^2=\left(3-x\right)^2\)
\(\Rightarrow2x-\dfrac{3}{4}=3-x\)
\(3x=3\dfrac{3}{4}\)
\(x=\dfrac{5}{4}\)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
Câu a :
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Câu b :
\(2x^2+3=-5x\)
\(\Leftrightarrow2x^2+3+5x=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\2x+3=0\Rightarrow x=-\dfrac{3}{2}\end{matrix}\right.\)
Mấy câu sau khó quá ko bt làm :)
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
\(\sqrt{2x-1}=x^3-2x^2+2x\left(ĐK:x\ge\frac{1}{2}\right)\) \(\left(1\right)\)
\(\Leftrightarrow\sqrt{2x-1}=x^3-x\left(2x-1\right)+x\)
Đặt: \(\sqrt{2x-1}=a\left(a\ge0\right)\)
Khi đó pt (1) trở thành:
\(a=x^3-a^2x+x\)
\(\Leftrightarrow\left(x^3-a^2x\right)+\left(x-a\right)=0\)
\(\Leftrightarrow x\left(x-a\right)\left(x+a\right)+\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-a=0\left(2\right)\\x^2+ax+1=0\left(3\right)\end{array}\right.\)
Giải (2): \(x-a=0\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt{2x-1}\)
\(\Leftrightarrow x^2=2x-1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\left(tm\right)\)
Giải (3) \(x^2+ax+1=0\)
Vì: \(VT\left(3\right)>0\) ( Vì: \(x\ge\frac{1}{2};a\ge0\) )
\(VP\left(3\right)=0\)
=> pt(3) vô nghiệm
Vậy pt trình đã cho có tập nghiêm là \(S=\left\{1\right\}\)
BÀi này bn còn có thế lm bằng pp đưa chúng về tổng các bình phương bằng 0