Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
Thì ta có
\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)
\(\Leftrightarrow b^3+b^2=a^3+a^2\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)
Mà \(\left(b^2+ab+a^2+b+a\right)>0\)
\(\Rightarrow a=b\)
\(\Rightarrow2x+3=y\)
Thế vào Q ta được
\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)
\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)
Lần sau bạn gõ căn ra nhé, nhìn thế này hơi khó đấy :>
Tìm x:
\(a.x-\sqrt{x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b. Đề hơi sai sai nên mk chưa làm ra :<
\(c.x-2\sqrt{x}+1=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow x=1\)
\(d.\sqrt{4x^2-4x+1}=3\\ \Leftrightarrow\sqrt{\left(2x\right)^2-2\cdot2x\cdot1+1}=3\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\\ \Leftrightarrow\left|2x-1\right|=3\left(1\right)\)
+) T/h 1: \(x\ge\frac{1}{2}thì\left(1\right)\Leftrightarrow2x-1=3\Leftrightarrow2x=4\Leftrightarrow x=2\)
+) T/h 2: \(x< \frac{1}{2}thì\left(1\right)\Leftrightarrow1-2x=3\Leftrightarrow-2x=2\Leftrightarrow x=-1\)
Vậy......................
\(e.\sqrt{x^2-6x+9}=5\Leftrightarrow\sqrt{\left(x-3\right)^2}=5\Leftrightarrow\left|x-3\right|=5\left(2\right)\)
+) T/h 1: \(x\ge3thì\left(2\right)\Leftrightarrow x-3=5\Leftrightarrow x=8\)
+) T/h 2: \(x< 3thì\left(2\right)\Leftrightarrow3-x=5\Leftrightarrow x=-2\)
Vậy ..........................
Bài 3
\(a.\) Mình hiểu đề thế này, có gì sai cmt cho mk biết nha :>
\(\sqrt{\frac{5-4x}{3}}\) có nghĩa khi \(\sqrt{5-4x}\ge0\Leftrightarrow5-4x\ge0\Leftrightarrow x\le\frac{5}{4}\)
\(b.\sqrt{2x^2+1}\)
Vì \(x^2\ge0\Leftrightarrow2x^2+1\ge1>0\forall x\)
Vậy biểu thức trên luôn có nghĩa với mọi giá trị của x
\(c.\sqrt{\frac{x-1}{2}}\) có nghĩa khi \(x-1\ge0\Leftrightarrow x\ge1\)
\(d.\frac{x-1}{x-2}-1\) có nghĩa khi \(x-2\ne0\Leftrightarrow x\ne2\)
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html
\(\sqrt{2x-1}=x^3-2x^2+2x\left(ĐK:x\ge\frac{1}{2}\right)\) \(\left(1\right)\)
\(\Leftrightarrow\sqrt{2x-1}=x^3-x\left(2x-1\right)+x\)
Đặt: \(\sqrt{2x-1}=a\left(a\ge0\right)\)
Khi đó pt (1) trở thành:
\(a=x^3-a^2x+x\)
\(\Leftrightarrow\left(x^3-a^2x\right)+\left(x-a\right)=0\)
\(\Leftrightarrow x\left(x-a\right)\left(x+a\right)+\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-a=0\left(2\right)\\x^2+ax+1=0\left(3\right)\end{array}\right.\)
Giải (2): \(x-a=0\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt{2x-1}\)
\(\Leftrightarrow x^2=2x-1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\left(tm\right)\)
Giải (3) \(x^2+ax+1=0\)
Vì: \(VT\left(3\right)>0\) ( Vì: \(x\ge\frac{1}{2};a\ge0\) )
\(VP\left(3\right)=0\)
=> pt(3) vô nghiệm
Vậy pt trình đã cho có tập nghiêm là \(S=\left\{1\right\}\)
BÀi này bn còn có thế lm bằng pp đưa chúng về tổng các bình phương bằng 0