\(^{x^2+y^2=0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
Do đường tròn tiếp xúc với trục Ox nên R = d(I,Ox) = |yI|.
Phương trình trục Ox là y = 0
Đáp án D đúng vì: Tâm I(−3;\(\dfrac{-5}{2}\)) và bán kính R=\(\dfrac{5}{2}\). Ta có
d(I, Ox) = |yI| = R.
giải hệ phương trình
x^2-2*x*y+x+y=0
x^4-4*x^2*y+3*x^2+y^2=0
a.
Pt giao điểm: \(cosx=0\Rightarrow x=\dfrac{\pi}{2}\)
\(S=\int\limits^{\pi}_0\left|cosx\right|dx=\int\limits^{\dfrac{\pi}{2}}_0cosxdx-\int\limits^{\pi}_{\dfrac{\pi}{2}}cosxdx=2\)
b.
Bạn coi lại đề, \(y=\dfrac{1}{2}x,x+\dfrac{1}{2}\) nghĩa là sao nhỉ?
c.
Pt giao điểm với Ox:
\(2-x-x^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
\(S=\int\limits^1_{-2}\left(2-x-x^2\right)dx=\left(2x-\dfrac{1}{2}x^2-\dfrac{1}{3}x^3\right)|^1_{-2}=\dfrac{9}{2}\)
\(x^2\left(y^2+z^2-x^2\right)+y^2\left(z^2+x^2-y^2\right)+z^2\left(x^2+y^{ 2}-z^2\right)\)
\(=x^2\left[\left(y+z\right)^2-x^2-2yz\right]+y^2\left[\left(z+x\right)^2-y^2-2zx\right]+z^2\left[\left(x+y\right)^2-z^2-2xy\right]\)
\(=x^2\left[\left(y+z-x\right)\left(y+z+x\right)-2xy\right]+y^2\left[\left(z+x-y\right)\left(z+x+y\right)-2zx\right]\)
\(+z^2\left[\left(x+y-z\right)\left(x+y+z\right)-2xy\right]\)
\(=x^2\left[\left(y+z-x\right).0-2yz\right]+y^2\left[\left(z+x-y\right).0-2zx\right]+z^2\left[\left(x+y-z\right).0-2xy\right]\)
\(=x^2\left(-2yz\right)+y^2\left(-2zx\right)+z^2\left(-2xy\right)\)\(=-2x^2yz-2xy^2z-2xyz^2\)
\(=-2xyz\left(x+y+z\right)=-2xyz.0=0\)
x,y =0
Tích cho mik nha
x2 + y 2 = 0
x= 0
y=0
học tốt