tìm gtnn của đa thức: P= x^2-2x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
1. 2x2-x=0
<=>x(2x-1)=o
=>x=0 hoặc x=1/2
2.A(x)4x2-8x+5/2=4(x-1/2)2+1/2
Vì 4(x-1/2)2>=o với mọi x
nên 4(x-1/2)2+1/2>=1/2 với mọi x
Dấu "="xảy ra khi và chỉ khi x-1/2=0<=> x= 1/2
Vậy GTNN của A=1/2 khi x= 1/2
Bài 1:\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Bài 2:\(A\left(x\right)=\frac{4x^2-8x+5}{2}=\frac{4\left(x^2-2x+1\right)+1}{2}=\frac{4\left(x-1\right)^2+1}{2}=2\left(x-1\right)^2+\frac{1}{2}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\Rightarrow A=2\left(x-1\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>\(A_{min}=\frac{1}{2}\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Ta có: M=−x2−2x+5
=−(x2+2x−5)
=−(x2+2x+1)+6
=−(x+1)2+6
Vì −(x+1)2≤0∀x
⇒−(x+1)2+6≤6∀x
Dấu "=" xảy ra ⇔
x=−1⇔x=−1
Vậy MAXM=6⇔x=−1
Đặt A=4x−x2+3
=−x2+4x+3=−(x2−4x−3)
=−(x2−4x+4−7)
=−[(x−2)2−7]
=−(x−2)2+7
Ta có: −(x−2)2≤0⇒−(x−2)2+7≤7
Dấu " = " khi (x−2)2=0⇔x=2
Vậy MAXA=7 khi x = 2
a)P=x2-2x+5
Ta có:x2-2x+5=x2-2x+1+4
=(x-1)2+4
Vì (x-1)2\(\ge\)0
Suy ra:(x-1)2+4\(\ge\)4
Dấu = xảy ra khi x-1=0
x=1
Vậy MinP=4 khi x=1
b)M=2x2-6x
Ta có:2x2-6x=2.(x2-3x)
=2.(x2-2.1,5x+2,25)-4,5
=2.(x-1,5)2-4,5
Vì 2.(x-1,5)2\(\ge\)0
Suy ra:2.(x-1,5)2-4,5\(\ge\)-4,5
Dấu = xảy ra khi x-1,5=0
x=1,5
Vậy Min M=-4,5 khi x=1,5
a)
\(x^2-2x+5\)
\(=\left(x^2-2.x.1+1^2\right)+4\)
\(=\left(x-1\right)^2+4\)
Ta có
\(\left(x-1\right)^2+4\ge4\) ( với mọi x)
Dấu " = " xảy ra khi x=1
Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x=1
b)
\(2x^2-6x\)
\(=\left[\left(\sqrt{2}.x\right)^2-2.\sqrt{2}.x.\frac{3\sqrt{2}}{2}+\frac{9}{2}\right]-\frac{9}{2}\)
\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)
Ta có
\(\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) với mọi x
Dấu " = " xảy ra khi \(x=\frac{3}{2}\)
Vậy biểu thức đạt giá trị nhỏ nhất là \(-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)
a) P = x2 - 2x + 5
= x2 - 2x + 1 - 1 + 5
= ( x - 1 )2 + 4
Ta có : \(\left(x-1\right)^2\ge\)\(0\)\(\forall\)\(x\)
\(\Rightarrow\left(x-1\right)^2+4\)\(\ge\)\(0\)\(\forall\)\(x\)
Dấu " = " xảy ra <=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy GTNN của P là 4 khi x = 1 .
b) M = 2x2 - 6x
= 2 ( x2 - 3x )
= \(2\left[\left(x^2-2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\right]\)
= \(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Ta có : \(2\left(x-\frac{3}{2}\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)
\(\Rightarrow\)\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)\(\forall\)\(x\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\left(x-\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\) \(\left(x-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy GTNN của M là \(-\frac{9}{2}\)khi \(x=\frac{3}{2}\).
P=x2-2x+5
=x2-2x+1+4
=(x+1)2+4
vì (x+1)2 \(\ge\)0 => (x+1)2+4 \(\ge\)4
=> GTNN của P là 4
<=> x+1=0
<=> x=-1