Phân tích đa thức thành nhân tử: (3x+1)2 - 4(x-2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-x-1)2-(3x-4)2=(x2+2x+1)-(9x2-24x+16)=-8x2+26x-15=\(-8\left(x-\dfrac{5}{2}\right)\left(x-\dfrac{3}{4}\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Ta có: (3x + 1)2 - 4(x - 2)2
= (3x + 1)2 - [2(x - 2)]2
= (3x + 1)2 - (2x - 4)2
= (3x + 1 - 2x + 4)(3x + 1 + 2x - 4)
= (x + 5)(5x - 3)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^4-3x^2+9\)
\(=x^4+6x^2+9-9x^2\)
\(=\left(x^2+3\right)^2-3x^2\)
\(=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
x4 - 3x2 + 9 = x4 - 2.x2.\(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{27}{4}\) = ( x2 - \(\frac{3}{2}\) ) - \(\frac{27}{4}\) = ......ko biết .....
\(x^4-4x^3-2x^2-3x+2\)
\(\Leftrightarrow x^4+x^3-5x^3+x^2-5x^2+2x^2-5x+2x+2\)
\(\Leftrightarrow x^4+x^3+x^2-5x^3-5x^2-5x+2x^2+2x+2\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)-5x\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^2-5x+2\right)\left(x^2+x+1\right)\)
Xin tick ạ !!!
\(3x^2+4x+x^2-4\\ =4x^2+4x-4\\ =4\left(x^2+x-1\right)\)
Ta có:
\(C_1:\left(3x+1\right)^2-4\left(x-2\right)^2=\left(9x^2+6x+1\right)-4\left(x^2-4x+4\right)\)
\(=9x^2+6x+1-4x^2+16x-16=5x^2+22x-15=5x\left(x+5\right)-3\left(x+5\right)=\left(5x-3\right)\left(x+5\right)\)
\(C_2:\left[\left(3x+1\right)-2\left(x-2\right)\right]\left[\left(3x+1\right)+2\left(x-2\right)\right]=\left(x+5\right)\left(5x-3\right)\)