Tìm phân số a/b sao cho
a) 4/7 * a/b - 1/3 = 1/21 b) a/b - 1/2 * 2/3 =2/7 c) a/b + 2/3 * 1/3 = 2/3 d) 11/13 : a/b : 2/3 = 33/13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{4}{7}\). \(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{21}\)
\(\dfrac{4}{7}\).\(\dfrac{a}{b}\) = \(\dfrac{1}{21}\) + \(\dfrac{1}{3}\)
\(\dfrac{4}{7}\).\(\dfrac{a}{b}\) = \(\dfrac{8}{21}\)
\(\dfrac{a}{b}\) = \(\dfrac{8}{21}\):\(\dfrac{4}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)
b, \(\dfrac{a}{b}\) + \(\dfrac{2}{3}\).\(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
\(\dfrac{a}{b}\) + \(\dfrac{2}{9}\) = \(\dfrac{2}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\) - \(\dfrac{2}{9}\)
\(\dfrac{a}{b}\) = \(\dfrac{4}{9}\)
c, \(\dfrac{a}{b}\) - \(\dfrac{1}{2}.\)\(\dfrac{2}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{7}\) + \(\dfrac{1}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{13}{21}\)
d, \(\dfrac{11}{13}\): \(\dfrac{a}{b}\): \(\dfrac{2}{3}\) = 2\(\dfrac{7}{13}\)
\(\dfrac{11}{13}\): \(\dfrac{a}{b}\):\(\dfrac{2}{3}\) = \(\dfrac{33}{13}\)
\(\dfrac{11}{13}\): \(\dfrac{a}{b}\) = \(\dfrac{33}{13}\) \(\times\) \(\dfrac{2}{3}\)
\(\dfrac{11}{13}\): \(\dfrac{a}{b}\) = \(\dfrac{66}{39}\)
\(\dfrac{a}{b}\) = \(\dfrac{11}{13}\) : \(\dfrac{66}{39}\)
\(\dfrac{a}{b}\) = \(\dfrac{1}{2}\)
BÀI 1
a, \(5\times\frac{-7}{10}=\frac{-35}{10}=\frac{-7}{2}\)
b, \(\frac{4}{5}\times\frac{-7}{10}=\frac{-28}{50}=\frac{-14}{25}\)
c, \(\frac{4}{9}+\frac{4}{3}\times\frac{16}{4}=\frac{4}{9}+\frac{16}{3}=\frac{52}{9}\)
d, \(\frac{11}{22}-\frac{3}{9}\times\frac{14}{21}=\frac{11}{22}-\frac{2}{9}=\frac{55}{198}=\frac{5}{18}\)
BÀI 2
\(A=\frac{6}{13}\times\frac{5}{7}+\frac{6}{13}\times\frac{2}{7}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{119}{91}\)
\(A=\frac{161}{91}=\frac{23}{13}\)
\(B=\frac{11}{15}\times\frac{4}{11}+\frac{11}{15}\times\frac{5}{11}+\frac{11}{15}\times\frac{2}{11}\)
\(B=\frac{4}{15}+\frac{1}{3}+\frac{2}{15}\)
\(B=\frac{11}{15}\)
\(C=\left(\frac{19}{64}-\frac{33}{22}+\frac{24}{51}\right)\times\left(\frac{1}{5}-\frac{1}{15}-\frac{2}{15}\right)\)
\(C=\frac{-797}{1088}\times0\)
\(C=0\)
\(D=\frac{8}{13}\times\frac{7}{12}+\frac{8}{13}\times\frac{5}{12}-\frac{1}{12}\)
\(D=\frac{14}{39}+\frac{10}{39}-\frac{1}{12}\)
\(D=\frac{83}{156}\)
bạn biết câu náy không (24 + 11) . {546 - [14 . (64 - 2^{3}3) : 2]} =
`a)1 4/23 + ( 5/21-4/23)+16/21-1/2`
`=27/23+5/21-4/23+16/21-1/2`
`=(27/23-4/23)+(5/21+16/21)-1/2`
`=23/23+21/21-1/2`
`=1+1-1/2`
`=2-1/2`
`=4/2-1/2`
`=3/2`
___
`b)75%-(5/2+5/3)+(-1/2)^3`
`=3/4-5/2+5/3+(-1/8)`
`=(3/4-5/2-1/8)+5/3`
`=(6/8-20/8-1/8)+5/3`
`=-15/8+5/3`
`=-45/24+40/24`
`=-5/24`
___
`c)-3/4(-55/9).8/11`
`=-3/4.(-40/9)`
`=-10/3`
__
`d)-3/8 . 6/13 + 7/13 . (-3/8) + 1 3/8`
`= -3/8 . (6/13 + 7/13) + 11/8`
`= -3/8 . 13/13 + 11/8`
`= -3/8 .1 + 11/8`
`= -3/8 + 11/8`
`= 8/8`
`=1`
11/13-(5/42-x)=(15/28-11/13)
11/13-(5/42-x)=-37/182
(5/42-x)=11/13+37/182
(5/42-x)=191/182
x=5/42-191/182
x=-254/273
vậy x=-254/273
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bài 1:a, \(\dfrac{13}{2}\) = \(\dfrac{13\times5}{2\times5}\) = \(\dfrac{65}{10}\)
b, \(\dfrac{11}{40}\) = \(\dfrac{11\times25}{40\times25}\) = \(\dfrac{275}{1000}\)
c, \(\dfrac{21}{250}\) = \(\dfrac{21\times4}{250\times4}\) = \(\dfrac{84}{1000}\)
d, \(\dfrac{27}{45}\) = \(\dfrac{27:9}{45:9}\) = \(\dfrac{3}{5}\) = \(\dfrac{3\times2}{5\times2}\) = \(\dfrac{6}{10}\)
Bài 2:
a, (3\(\dfrac{1}{8}\) + 1\(\dfrac{3}{4}\)): 2\(\dfrac{1}{4}\)
= (\(\dfrac{25}{8}\) + \(\dfrac{7}{4}\)): \(\dfrac{9}{4}\)
= \(\dfrac{39}{8}\) \(\times\) \(\dfrac{4}{9}\)
= \(\dfrac{13}{6}\)
a, \(\dfrac{4}{7}\) \(\times\) \(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{21}\)
\(\dfrac{4}{7}\) \(\times\) \(\dfrac{a}{b}\) = \(\dfrac{1}{21}\) + \(\dfrac{1}{3}\)
\(\dfrac{4}{7}\) \(\times\) \(\dfrac{a}{b}\) = \(\dfrac{8}{21}\)
\(\dfrac{a}{b}\) = \(\dfrac{8}{21}\): \(\dfrac{4}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)
b, \(\dfrac{a}{b}\) - \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) - \(\dfrac{1}{3}\) = \(\dfrac{2}{7}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{7}\) + \(\dfrac{1}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{13}{21}\)