K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{144}{9}=16\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=CH^2+AH^2\)

\(\Leftrightarrow AC^2=9^2+12^2=225\)

hay AC=15(cm)

Ta có: BH+CH=BC

nên BC=9+16=25(cm)

6 tháng 8 2021

Theo hệ thức lượng trong tam giác vuông:

• `AH^2=HB.HC => HB=12^2 : 9=16(cm)`

`=> BC=HB+HC=9+16=25(cm)`

• `AB^2=HB.BC=>AB=\sqrt(16.25)=20(cm)`

•`AC^2=HC.BC=>AC=15(cm)`

Vậy...

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

1 tháng 7 2016

Tôi đang cần gấp giúp tôi với

17 tháng 1 2020

A B C H

TA CÓ BH + HC = BC

=> BC = 9+16=25

THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(BC^2=AB^2+AC^2\)

\(AB^2=BC^2-AC^2\)

\(AB^2=25^2-5^2\)

......

AH TƯƠNG TỰ

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

17 tháng 7 2018

A B C H

Xét  \(\Delta ABH\)và   \(\Delta CAH\)

     \(\widehat{AHB}=\widehat{CHA}=90^0\)

    \(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)

suy ra:  \(\Delta ABH~\Delta CAH\) (g.g)

suy ra:   \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)

hay   \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)

suy ra:  \(CH=\frac{6.30}{5}=36\)

             \(BH=\frac{5.30}{6}=25\)

14 tháng 1 2018

A B C H

Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)

Theo định lí Py ta go ta cs :

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=12^2+9^2\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=15cm\)

Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)

Theo định lí Py ta go ta có :

\(AC^2=HC^2+AH^2\)

\(\Leftrightarrow AC^2=16^2+12^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=20cm\)

b/ Ta có :

\(HB+HC=BC\)

\(\Leftrightarrow BC=9+16=25cm\)

Lại có :

\(AB^2+AC^2=15^2+20^2=225+400=625cm\)

\(BC^2=25^2=625cm\)

\(\Leftrightarrow AB^2+AC^2=BC^2\)

Theo định lí Py ta go đảo thì tam giác ABC vuông tại A

18 tháng 4 2023

Với 9 tia chung gốc số góc tạo thành là

A. 16 góc

B. 72 góc

C. 36 góc 

D. 42 góc

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

HA=9*12/15=108/15=7,2cm

HB=9^2/15=81/15=5,4cm

\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)

 

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm