Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2300 = (23)100 = 8100 và 3200 = (32)100 = 9100 nên 2300 < 3200;
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(\frac{2017}{2300}\)lớn hơn\(\frac{2016}{3200}\)
chúc bạn học tốt !
`@` `\text {Ans}`
`\downarrow`
`a)`
\(3^{200}\text{ và }2^{300}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì `9 > 8 => 9^100 > 8^100`
`=> 3^200 > 2^300`
`b)`
\(27^{101}\text{ và }81^{35}\)
\(27^{101}=\left(3^3\right)^{101}=3^{303}\)
\(81^{35}=\left(3^4\right)^{35}=3^{140}\)
Vì `303 > 140 => 3^303 > 3^140`
`=> 27^101 > 81^35`
`c)`
\(2^{332}\text{ và }3^{223}\)
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì `9 > 8 => 9^111 > 8^111`
`=> 2^332 < 3^223.`
a: 3^200=9^100
2^300=8^100
mà 9>8
nên 3^200>2^300
b: 27^101=3^303
81^35=3^140
mà 303>140
nên 27^101>81^35
c: 2^332<2^333=8^111
3^223>3^222=9^111
mà 9>8
nên 3^223>8^111>2^332
\(\frac{2017}{2300}\)có mẫu số bé hơn \(\frac{2016}{3200}\)
\(=>\frac{2017}{2300}>\frac{2016}{3200}\)
a) \(2^x=16=2^4\Rightarrow x=4\)
b) \(x^3=27=3^3\Rightarrow x=3\)
c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)
\(\Rightarrow x=6\) hay \(x=-2\)
a) \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
vì \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(3^{500}=3^{5.100}=243^{100}\)
\(7^{300}=7^{3.100}=343^{100}\)
vì \(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
Ta có :
2300 = (23)100 = 8100 < 9100 = (32)100 = 3200
=> 2300 < 3200
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\) (1)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\) (2)
Từ (1) và (2)
\(\Rightarrow2^{300}< 3^{200}\)
Vậy \(2^{300}< 3^{200}\).